Selective potentiation of paclitaxel (Taxol)-induced cell death by mitogen-activated protein kinase kinase inhibition in human cancer cell lines

Research output: Contribution to journalArticle

93 Citations (Scopus)

Abstract

Activation of the mitogen-activated protein kinase (MAPK) pathway in HeLa and Chinese hamster ovary cells after treatment with paclitaxel (Taxol) and other microtubule interacting agents has been investigated. Using a trans-reporting system, the phosphorylation of the nuclear transcription factors Elk-1 and c-jun was measured. Concentration- and time-dependent activation of the Elk-1 pathway, mediated primarily by the extracellular signal-regulated kinase (ERK) component of the MAPK family, was observed. Inactive drug analogs and other cytotoxic compounds that do not target microtubules failed to induce similar levels of activation, thereby indicating that an interaction between these drugs and the microtubule is essential for the activation of MAPKs. Evaluation of the endogenous levels of MAPK expression revealed cell-dependent expression of the ERK, c-jun N-terminal kinase, and p38 pathways. In the case of HeLa cells, time-dependent activation of ERK coincided with increased poly(ADP-ribose) polymerase (PARP) cleavage, phosphatidylserine externalization, and increased accumulation of cells in G2M. In both cell lines, inhibition of ERK activity potentiated paclitaxel-induced PARP cleavage and phosphatidylserine externalization, suggesting that ERK activity coincided with, but did not mediate, the cytotoxic effects of paclitaxel. We evaluated the nature of the interaction between paclitaxel and the MAPK kinase inhibitor U0126 in three cell lines, on the basis of a potential chemotherapeutic advantage of paclitaxel plus ERK inhibition. Our data confirmed additivity in those cells lines that undergo paclitaxel-induced ERK activation, and antagonism in cells with low ERK activity, suggesting that in tumors with high ERK activity, there may be an application for this strategy in therapy.

Original languageEnglish (US)
Pages (from-to)290-301
Number of pages12
JournalMolecular Pharmacology
Volume60
Issue number2
StatePublished - 2001

Fingerprint

Mitogen-Activated Protein Kinase Kinases
Extracellular Signal-Regulated MAP Kinases
Paclitaxel
Cell Death
Cell Line
Neoplasms
Mitogen-Activated Protein Kinases
Microtubules
Poly(ADP-ribose) Polymerases
Phosphatidylserines
ets-Domain Protein Elk-1
Growth Substances
JNK Mitogen-Activated Protein Kinases
Cricetulus
Drug Interactions
HeLa Cells
Ovary
Phosphorylation

ASJC Scopus subject areas

  • Pharmacology

Cite this

@article{69d86d82d86f43ecb193f41bb3c93877,
title = "Selective potentiation of paclitaxel (Taxol)-induced cell death by mitogen-activated protein kinase kinase inhibition in human cancer cell lines",
abstract = "Activation of the mitogen-activated protein kinase (MAPK) pathway in HeLa and Chinese hamster ovary cells after treatment with paclitaxel (Taxol) and other microtubule interacting agents has been investigated. Using a trans-reporting system, the phosphorylation of the nuclear transcription factors Elk-1 and c-jun was measured. Concentration- and time-dependent activation of the Elk-1 pathway, mediated primarily by the extracellular signal-regulated kinase (ERK) component of the MAPK family, was observed. Inactive drug analogs and other cytotoxic compounds that do not target microtubules failed to induce similar levels of activation, thereby indicating that an interaction between these drugs and the microtubule is essential for the activation of MAPKs. Evaluation of the endogenous levels of MAPK expression revealed cell-dependent expression of the ERK, c-jun N-terminal kinase, and p38 pathways. In the case of HeLa cells, time-dependent activation of ERK coincided with increased poly(ADP-ribose) polymerase (PARP) cleavage, phosphatidylserine externalization, and increased accumulation of cells in G2M. In both cell lines, inhibition of ERK activity potentiated paclitaxel-induced PARP cleavage and phosphatidylserine externalization, suggesting that ERK activity coincided with, but did not mediate, the cytotoxic effects of paclitaxel. We evaluated the nature of the interaction between paclitaxel and the MAPK kinase inhibitor U0126 in three cell lines, on the basis of a potential chemotherapeutic advantage of paclitaxel plus ERK inhibition. Our data confirmed additivity in those cells lines that undergo paclitaxel-induced ERK activation, and antagonism in cells with low ERK activity, suggesting that in tumors with high ERK activity, there may be an application for this strategy in therapy.",
author = "McDaid, {Hayley M.} and {Band Horwitz}, Susan",
year = "2001",
language = "English (US)",
volume = "60",
pages = "290--301",
journal = "Molecular Pharmacology",
issn = "0026-895X",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "2",

}

TY - JOUR

T1 - Selective potentiation of paclitaxel (Taxol)-induced cell death by mitogen-activated protein kinase kinase inhibition in human cancer cell lines

AU - McDaid, Hayley M.

AU - Band Horwitz, Susan

PY - 2001

Y1 - 2001

N2 - Activation of the mitogen-activated protein kinase (MAPK) pathway in HeLa and Chinese hamster ovary cells after treatment with paclitaxel (Taxol) and other microtubule interacting agents has been investigated. Using a trans-reporting system, the phosphorylation of the nuclear transcription factors Elk-1 and c-jun was measured. Concentration- and time-dependent activation of the Elk-1 pathway, mediated primarily by the extracellular signal-regulated kinase (ERK) component of the MAPK family, was observed. Inactive drug analogs and other cytotoxic compounds that do not target microtubules failed to induce similar levels of activation, thereby indicating that an interaction between these drugs and the microtubule is essential for the activation of MAPKs. Evaluation of the endogenous levels of MAPK expression revealed cell-dependent expression of the ERK, c-jun N-terminal kinase, and p38 pathways. In the case of HeLa cells, time-dependent activation of ERK coincided with increased poly(ADP-ribose) polymerase (PARP) cleavage, phosphatidylserine externalization, and increased accumulation of cells in G2M. In both cell lines, inhibition of ERK activity potentiated paclitaxel-induced PARP cleavage and phosphatidylserine externalization, suggesting that ERK activity coincided with, but did not mediate, the cytotoxic effects of paclitaxel. We evaluated the nature of the interaction between paclitaxel and the MAPK kinase inhibitor U0126 in three cell lines, on the basis of a potential chemotherapeutic advantage of paclitaxel plus ERK inhibition. Our data confirmed additivity in those cells lines that undergo paclitaxel-induced ERK activation, and antagonism in cells with low ERK activity, suggesting that in tumors with high ERK activity, there may be an application for this strategy in therapy.

AB - Activation of the mitogen-activated protein kinase (MAPK) pathway in HeLa and Chinese hamster ovary cells after treatment with paclitaxel (Taxol) and other microtubule interacting agents has been investigated. Using a trans-reporting system, the phosphorylation of the nuclear transcription factors Elk-1 and c-jun was measured. Concentration- and time-dependent activation of the Elk-1 pathway, mediated primarily by the extracellular signal-regulated kinase (ERK) component of the MAPK family, was observed. Inactive drug analogs and other cytotoxic compounds that do not target microtubules failed to induce similar levels of activation, thereby indicating that an interaction between these drugs and the microtubule is essential for the activation of MAPKs. Evaluation of the endogenous levels of MAPK expression revealed cell-dependent expression of the ERK, c-jun N-terminal kinase, and p38 pathways. In the case of HeLa cells, time-dependent activation of ERK coincided with increased poly(ADP-ribose) polymerase (PARP) cleavage, phosphatidylserine externalization, and increased accumulation of cells in G2M. In both cell lines, inhibition of ERK activity potentiated paclitaxel-induced PARP cleavage and phosphatidylserine externalization, suggesting that ERK activity coincided with, but did not mediate, the cytotoxic effects of paclitaxel. We evaluated the nature of the interaction between paclitaxel and the MAPK kinase inhibitor U0126 in three cell lines, on the basis of a potential chemotherapeutic advantage of paclitaxel plus ERK inhibition. Our data confirmed additivity in those cells lines that undergo paclitaxel-induced ERK activation, and antagonism in cells with low ERK activity, suggesting that in tumors with high ERK activity, there may be an application for this strategy in therapy.

UR - http://www.scopus.com/inward/record.url?scp=0034920013&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034920013&partnerID=8YFLogxK

M3 - Article

C2 - 11455016

AN - SCOPUS:0034920013

VL - 60

SP - 290

EP - 301

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 0026-895X

IS - 2

ER -