Saturating representation of loop conformational fragments in structure databanks

Narcis Fernandez-Fuentes, Andras Fiser

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

Background: Short fragments of proteins are fundamental starting points in various structure prediction applications, such as in fragment based loop modeling methods but also in various full structure build-up procedures. The applicability and performance of these approaches depend on the availability of short fragments in structure databanks. Results: We studied the representation of protein loop fragments up to 14 residues in length. All possible query fragments found in sequence databases (Sequence Space) were clustered and cross referenced with available structural fragments in Protein Data Bank (Structure Space). We found that the expansion of PDB in the last few years resulted in a dense coverage of loop conformational fragments. For each loops of length 8 in the current Sequence Space there is at least one loop in Structure Space with 50% or higher sequence identity. By correlating sequence and structure clusters of loops we found that a 50% sequence identity generally guarantees structural similarity. These percentages of coverage at 50% sequence cutoff drop to 96, 94, 68, 53, 33 and 13% for loops of length 9, 10, 11, 12, 13, and 14, respectively. There is not a single loop in the current Sequence Space at any length up to 14 residues that is not matched with a conformational segment that shares at least 20% sequence identity. This minimum observed identity is 40% for loops of 12 residues or shorter and is as high as 50% for 10 residue or shorter loops. We also assessed the impact of rapidly growing sequence databanks on the estimated number of new loop conformations and found that while the number of sequentially unique sequence segments increased about six folds during the last five years there are almost no unique conformational segments among these up to 12 residues long fragments. Conclusion: The results suggest that fragment based prediction approaches are not limited any more by the completeness of fragments in databanks but rather by the effective scoring and search algorithms to locate them. The current favorable coverage and trends observed will be further accentuated with the progress of Protein Structure Initiative that targets new protein folds and ultimately aims at providing an exhaustive coverage of the structure space.

Original languageEnglish (US)
Article number15
JournalBMC Structural Biology
Volume6
DOIs
StatePublished - Jul 4 2006

Fingerprint

Databases
Proteins

ASJC Scopus subject areas

  • Structural Biology

Cite this

Saturating representation of loop conformational fragments in structure databanks. / Fernandez-Fuentes, Narcis; Fiser, Andras.

In: BMC Structural Biology, Vol. 6, 15, 04.07.2006.

Research output: Contribution to journalArticle

@article{6924510247b74a8ab601d7e0147a507d,
title = "Saturating representation of loop conformational fragments in structure databanks",
abstract = "Background: Short fragments of proteins are fundamental starting points in various structure prediction applications, such as in fragment based loop modeling methods but also in various full structure build-up procedures. The applicability and performance of these approaches depend on the availability of short fragments in structure databanks. Results: We studied the representation of protein loop fragments up to 14 residues in length. All possible query fragments found in sequence databases (Sequence Space) were clustered and cross referenced with available structural fragments in Protein Data Bank (Structure Space). We found that the expansion of PDB in the last few years resulted in a dense coverage of loop conformational fragments. For each loops of length 8 in the current Sequence Space there is at least one loop in Structure Space with 50{\%} or higher sequence identity. By correlating sequence and structure clusters of loops we found that a 50{\%} sequence identity generally guarantees structural similarity. These percentages of coverage at 50{\%} sequence cutoff drop to 96, 94, 68, 53, 33 and 13{\%} for loops of length 9, 10, 11, 12, 13, and 14, respectively. There is not a single loop in the current Sequence Space at any length up to 14 residues that is not matched with a conformational segment that shares at least 20{\%} sequence identity. This minimum observed identity is 40{\%} for loops of 12 residues or shorter and is as high as 50{\%} for 10 residue or shorter loops. We also assessed the impact of rapidly growing sequence databanks on the estimated number of new loop conformations and found that while the number of sequentially unique sequence segments increased about six folds during the last five years there are almost no unique conformational segments among these up to 12 residues long fragments. Conclusion: The results suggest that fragment based prediction approaches are not limited any more by the completeness of fragments in databanks but rather by the effective scoring and search algorithms to locate them. The current favorable coverage and trends observed will be further accentuated with the progress of Protein Structure Initiative that targets new protein folds and ultimately aims at providing an exhaustive coverage of the structure space.",
author = "Narcis Fernandez-Fuentes and Andras Fiser",
year = "2006",
month = "7",
day = "4",
doi = "10.1186/1472-6807-6-15",
language = "English (US)",
volume = "6",
journal = "BMC Structural Biology",
issn = "1472-6807",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Saturating representation of loop conformational fragments in structure databanks

AU - Fernandez-Fuentes, Narcis

AU - Fiser, Andras

PY - 2006/7/4

Y1 - 2006/7/4

N2 - Background: Short fragments of proteins are fundamental starting points in various structure prediction applications, such as in fragment based loop modeling methods but also in various full structure build-up procedures. The applicability and performance of these approaches depend on the availability of short fragments in structure databanks. Results: We studied the representation of protein loop fragments up to 14 residues in length. All possible query fragments found in sequence databases (Sequence Space) were clustered and cross referenced with available structural fragments in Protein Data Bank (Structure Space). We found that the expansion of PDB in the last few years resulted in a dense coverage of loop conformational fragments. For each loops of length 8 in the current Sequence Space there is at least one loop in Structure Space with 50% or higher sequence identity. By correlating sequence and structure clusters of loops we found that a 50% sequence identity generally guarantees structural similarity. These percentages of coverage at 50% sequence cutoff drop to 96, 94, 68, 53, 33 and 13% for loops of length 9, 10, 11, 12, 13, and 14, respectively. There is not a single loop in the current Sequence Space at any length up to 14 residues that is not matched with a conformational segment that shares at least 20% sequence identity. This minimum observed identity is 40% for loops of 12 residues or shorter and is as high as 50% for 10 residue or shorter loops. We also assessed the impact of rapidly growing sequence databanks on the estimated number of new loop conformations and found that while the number of sequentially unique sequence segments increased about six folds during the last five years there are almost no unique conformational segments among these up to 12 residues long fragments. Conclusion: The results suggest that fragment based prediction approaches are not limited any more by the completeness of fragments in databanks but rather by the effective scoring and search algorithms to locate them. The current favorable coverage and trends observed will be further accentuated with the progress of Protein Structure Initiative that targets new protein folds and ultimately aims at providing an exhaustive coverage of the structure space.

AB - Background: Short fragments of proteins are fundamental starting points in various structure prediction applications, such as in fragment based loop modeling methods but also in various full structure build-up procedures. The applicability and performance of these approaches depend on the availability of short fragments in structure databanks. Results: We studied the representation of protein loop fragments up to 14 residues in length. All possible query fragments found in sequence databases (Sequence Space) were clustered and cross referenced with available structural fragments in Protein Data Bank (Structure Space). We found that the expansion of PDB in the last few years resulted in a dense coverage of loop conformational fragments. For each loops of length 8 in the current Sequence Space there is at least one loop in Structure Space with 50% or higher sequence identity. By correlating sequence and structure clusters of loops we found that a 50% sequence identity generally guarantees structural similarity. These percentages of coverage at 50% sequence cutoff drop to 96, 94, 68, 53, 33 and 13% for loops of length 9, 10, 11, 12, 13, and 14, respectively. There is not a single loop in the current Sequence Space at any length up to 14 residues that is not matched with a conformational segment that shares at least 20% sequence identity. This minimum observed identity is 40% for loops of 12 residues or shorter and is as high as 50% for 10 residue or shorter loops. We also assessed the impact of rapidly growing sequence databanks on the estimated number of new loop conformations and found that while the number of sequentially unique sequence segments increased about six folds during the last five years there are almost no unique conformational segments among these up to 12 residues long fragments. Conclusion: The results suggest that fragment based prediction approaches are not limited any more by the completeness of fragments in databanks but rather by the effective scoring and search algorithms to locate them. The current favorable coverage and trends observed will be further accentuated with the progress of Protein Structure Initiative that targets new protein folds and ultimately aims at providing an exhaustive coverage of the structure space.

UR - http://www.scopus.com/inward/record.url?scp=33748959731&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748959731&partnerID=8YFLogxK

U2 - 10.1186/1472-6807-6-15

DO - 10.1186/1472-6807-6-15

M3 - Article

VL - 6

JO - BMC Structural Biology

JF - BMC Structural Biology

SN - 1472-6807

M1 - 15

ER -