Saquinavir-mediated inhibition of human immunodeficiency virus (HIV) infection in SCID mice implanted with human fetal thymus and liver tissue: An in vivo model for evaluating the effect of drug therapy on HIV infection in lymphoid tissues

Massimo Pettoello-Mantovani, Tobias R. Kollmann, Christina Raker, Ana Kim, Sergey Yurasov, Robert Tudor, Hugh Wiltshire, Harris Goldstein

Research output: Contribution to journalArticle

14 Scopus citations


Treatment with protease inhibitors alone or in combination with inhibitors of reverse transcriptase potently suppresses levels of human immunodeficiency virus (HIV) RNA in plasma and thereby may significantly delay the progression of HIV-mediated disease. To investigate the effect of treatment with the protease inhibitor saquinavir on HIV replication in the lymphoid tissues, we used a SCID-hu mouse model that we developed, in which human thymic and liver tissues (hu-thy/liv) were implanted under both kidney capsules in SCID mice (thy/liv-SCID-hu mice). These mice are populated in the periphery with large numbers of human T cells and develop disseminated HIV infection after intraimplant injection. thy/liv-SCID-hu mice with established HIV infection that were treated for 1 month with saquinavir had a significantly lower vital load present in the implanted hu-thy/liv and mouse spleen than did the untreated HIV-infected thy/liv-SCID-hu mice. To examine the capacity of acute treatment with saquinavir to prevent HIV infection, some thy/liv-SCID-hu mice were inoculated with HIV and then immediately started on saquinavir. Although treated mice had markedly lower viral loads in the thy/liv implants and spleens, HIV infection was not completely prevented. Thus, the effect of antiviral therapy on HIV infection in the major site of HIV replication, the lymphoid tissues, can be readily evaluated in our thy/liv-SCID-hu mice. These mice should prove to be a useful model for determining the in vivo effectiveness of different therapeutic interventions on acute and chronic HIV infection.

Original languageEnglish (US)
Pages (from-to)1880-1887
Number of pages8
JournalAntimicrobial Agents and Chemotherapy
Issue number9
Publication statusPublished - Sep 1 1997


ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Cite this