TY - JOUR
T1 - SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication
AU - Kim, Eui Tae
AU - White, Tommy E.
AU - Brandariz-Núñez, Alberto
AU - Diaz-Griffero, Felipe
AU - Weitzman, Matthew D.
PY - 2013/12
Y1 - 2013/12
N2 - Macrophages play important roles in host immune defense against virus infection. During infection by herpes simplex virus 1 (HSV-1), macrophages acquire enhanced antiviral potential. Restriction of HSV-1 replication and progeny production is important to prevent viral spread, but the cellular mechanisms that inhibit the DNA virus in macrophages are unknown. SAMHD1 was recently identified as a retrovirus restriction factor highly expressed in macrophages. The SAMHD1 protein is expressed in both undifferentiated monocytes and differentiated macrophages, but retroviral restriction is limited to differentiated cells by modulation of SAMHD1 phosphorylation. It is proposed to block reverse transcription of retroviral RNA into DNA by depleting cellular deoxynucleotide triphosphates (dNTPs). Viruses with DNA genomes do not employ reverse transcription during infection, but replication of their viral genomes is also dependent on intracellular dNTP concentrations. Here, we demonstrate that SAMHD1 restricts replication of the HSV-1 DNA genome in differentiated macrophage cell lines. Depleting SAMHD1 in THP-1 cells enhanced HSV-1 replication, while ectopic overexpression of SAMHD1 in U937 cells repressed HSV-1 replication. SAMHD1 did not impact viral gene expression from incoming HSV-1 viral genomes. HSV-1 restriction involved the dNTP triphosphohydrolase activity of SAMHD1 and was partially overcome by addition of exogenous deoxynucleosides. Unlike retroviruses, restriction of HSV-1 was not affected by SAMHD1 phosphorylation status. Our results suggest that SAMHD1 functions broadly to inhibit replication of DNA viruses in nondividing macrophages.
AB - Macrophages play important roles in host immune defense against virus infection. During infection by herpes simplex virus 1 (HSV-1), macrophages acquire enhanced antiviral potential. Restriction of HSV-1 replication and progeny production is important to prevent viral spread, but the cellular mechanisms that inhibit the DNA virus in macrophages are unknown. SAMHD1 was recently identified as a retrovirus restriction factor highly expressed in macrophages. The SAMHD1 protein is expressed in both undifferentiated monocytes and differentiated macrophages, but retroviral restriction is limited to differentiated cells by modulation of SAMHD1 phosphorylation. It is proposed to block reverse transcription of retroviral RNA into DNA by depleting cellular deoxynucleotide triphosphates (dNTPs). Viruses with DNA genomes do not employ reverse transcription during infection, but replication of their viral genomes is also dependent on intracellular dNTP concentrations. Here, we demonstrate that SAMHD1 restricts replication of the HSV-1 DNA genome in differentiated macrophage cell lines. Depleting SAMHD1 in THP-1 cells enhanced HSV-1 replication, while ectopic overexpression of SAMHD1 in U937 cells repressed HSV-1 replication. SAMHD1 did not impact viral gene expression from incoming HSV-1 viral genomes. HSV-1 restriction involved the dNTP triphosphohydrolase activity of SAMHD1 and was partially overcome by addition of exogenous deoxynucleosides. Unlike retroviruses, restriction of HSV-1 was not affected by SAMHD1 phosphorylation status. Our results suggest that SAMHD1 functions broadly to inhibit replication of DNA viruses in nondividing macrophages.
UR - http://www.scopus.com/inward/record.url?scp=84887133253&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887133253&partnerID=8YFLogxK
U2 - 10.1128/JVI.02291-13
DO - 10.1128/JVI.02291-13
M3 - Article
C2 - 24067963
AN - SCOPUS:84887133253
SN - 0022-538X
VL - 87
SP - 12949
EP - 12956
JO - Journal of Virology
JF - Journal of Virology
IS - 23
ER -