Retinal Vascular and Anatomical Features in the Spontaneously Hypertensive Rat

Yunxia Li, Qian Wang, Eric R. Muir, Jeffrey W. Kiel, Timothy Q. Duong

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Purpose: To evaluate whether invivo optical imaging methods and histology can detect comparable vascular and neuronal damage in the retina due to the effects of progressive chronic hypertension on the retinal vasculature and neurons using the spontaneously hypertensive rat (SHR) model at young and old ages. Methods: Male SHR and normotensive Wistar Kyoto (WKY) rats were studied at 10 and 40 weeks of age (n = 6 each group). Arterial blood pressure was measured with a tail-cuff. Under anesthesia, fundus photography was used to measure retinal arterial diameters and optical coherence tomography was used to measure retinal layer thicknesses. Histology was then used to measure microvascular and cell density in different retinal layers. Results: Blood pressure was significantly higher in SHR than WKY in both age groups (p < .05). Fundus images showed no gross abnormalities, hemorrhage, or stenosis in all groups. Retinal vessels, however, appeared more tortuous in SHR compared to WKY at both ages. Retinal vessel diameters in SHR were significantly narrower than in WKY at both age groups (p < .05). Microvascular densities at 10 weeks were not significantly different (p > .05) but were markedly reduced in SHR at 40 weeks compared to WKY (p < .05). The outer nuclear layer thickness of SHR was significantly thinner than that of WKY at both ages (p < .05), consistent with histological cell density measurements (p < .05). The ganglion cell layer and inner nuclear layer thicknesses were not significantly different between SHR and WKY (p > .05), consistent with the corresponding histological cell density measurements (p > .05). Conclusion: In vivo optical imaging showed that systemic hypertension progressively reduces retinal arterial diameter and thicknesses of the outer retina in spontaneously hypertensive rats, with consistent vascular and neuronal findings from histology.

Original languageEnglish (US)
Pages (from-to)1422-1429
Number of pages8
JournalCurrent Eye Research
Issue number11
StatePublished - Nov 1 2020
Externally publishedYes


  • SHR
  • hypertensive retinopathy
  • retinal pathology
  • stenosis

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Retinal Vascular and Anatomical Features in the Spontaneously Hypertensive Rat'. Together they form a unique fingerprint.

Cite this