Relative efficiency of utilization of promoter and termination sites by bacteriophage T3 RNA polymerase

D. Sengupta, D. Chakravarti, U. Maitra

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Bacteriophage T3 RNA polymerase promoters have been classified as class II and class III on the basis of their relative location in T3 DNA as well as on the function of the protein products encoded by the messages transcribed from them. In the present work, the efficiency of utilization of several class II and class III promoters by bacteriophage T3 RNA polymerase was compared with regard to (a) rate of initiation of transcription as determined by [32P]PP(i) exchange with GTP; (b) complex formation between polymerase and promoters in the presence of GTP; and (c) competition between different promoters for T3 RNA polymerase in a standard transcription assay. The results of these experiments indicated that the class II promoters at 1.05 and 22.8 T3 map units, whose promoter sequences are remarkably similar to the consensus class III promoter sequences, are nearly as strong as typical class III promoters. In contrast, the class II promoter at 14.3 T3 map units, whose promoter sequence differs from the consensus class III promoter sequence by having a C:G base pair instead of a usual A:T base pair at the -1 position, was considerably weaker than the class III promoter. When the C:G base pair at this position was changed to A:T using site-directed mutagenesis, the rate of initiation of RNA synthesis from the mutant promoter was similar to that of a typical class III promoter. In agreement with this observation, it was observed that changing the A:T base pair at the -1 position of a strong class II promoter, at 1.05 T3 map units, to C:G decreased the rate of RNA synthesis from this promoter by about 65%. These observations indicate that the nucleotide residues at the -1 position play a critical role in determining the efficiency of promoter utilization by T3 RNA polymerase. The two termination sites recognized in vitro by bacteriophage T3 RNA polymerase on the T3 genome have been cloned, sequenced, and mapped. Analysis of the DNA nucleotide sequence surrounding the termination site at 59.7 map units indicated that the putative RNA transcript arising from this region can be arranged into a GC-rich stem-loop structure followed by a U-rich 3' tail. However, a major fraction of T3 RNA polymerase molecules read through this terminator in vitro to transcribe regions of T3 DNA beyond this terminator. In contrast to termination at 59.7 map units, termination of transcription at 100 T3 map units does not occur in response to any putative terminator structure or sequence. Rather, T3 RNA polymerase transcribes through the terminal repeat region to the end of T3 DNA molecules to yield run-off transcripts.

Original languageEnglish (US)
Pages (from-to)14246-14255
Number of pages10
JournalJournal of Biological Chemistry
Volume264
Issue number24
StatePublished - 1989

Fingerprint

Base Pairing
Transcription
DNA
RNA
Guanosine Triphosphate
Nucleotides
Mutagenesis
Molecules
Terminal Repeat Sequences
Consensus Sequence
Site-Directed Mutagenesis
bacteriophage T3 RNA polymerase
Assays
Genes
Genome
Proteins
Experiments
In Vitro Techniques

ASJC Scopus subject areas

  • Biochemistry

Cite this

Relative efficiency of utilization of promoter and termination sites by bacteriophage T3 RNA polymerase. / Sengupta, D.; Chakravarti, D.; Maitra, U.

In: Journal of Biological Chemistry, Vol. 264, No. 24, 1989, p. 14246-14255.

Research output: Contribution to journalArticle

Sengupta, D. ; Chakravarti, D. ; Maitra, U. / Relative efficiency of utilization of promoter and termination sites by bacteriophage T3 RNA polymerase. In: Journal of Biological Chemistry. 1989 ; Vol. 264, No. 24. pp. 14246-14255.
@article{317ab5dbf4ae4f268503d7c19bf7556e,
title = "Relative efficiency of utilization of promoter and termination sites by bacteriophage T3 RNA polymerase",
abstract = "Bacteriophage T3 RNA polymerase promoters have been classified as class II and class III on the basis of their relative location in T3 DNA as well as on the function of the protein products encoded by the messages transcribed from them. In the present work, the efficiency of utilization of several class II and class III promoters by bacteriophage T3 RNA polymerase was compared with regard to (a) rate of initiation of transcription as determined by [32P]PP(i) exchange with GTP; (b) complex formation between polymerase and promoters in the presence of GTP; and (c) competition between different promoters for T3 RNA polymerase in a standard transcription assay. The results of these experiments indicated that the class II promoters at 1.05 and 22.8 T3 map units, whose promoter sequences are remarkably similar to the consensus class III promoter sequences, are nearly as strong as typical class III promoters. In contrast, the class II promoter at 14.3 T3 map units, whose promoter sequence differs from the consensus class III promoter sequence by having a C:G base pair instead of a usual A:T base pair at the -1 position, was considerably weaker than the class III promoter. When the C:G base pair at this position was changed to A:T using site-directed mutagenesis, the rate of initiation of RNA synthesis from the mutant promoter was similar to that of a typical class III promoter. In agreement with this observation, it was observed that changing the A:T base pair at the -1 position of a strong class II promoter, at 1.05 T3 map units, to C:G decreased the rate of RNA synthesis from this promoter by about 65{\%}. These observations indicate that the nucleotide residues at the -1 position play a critical role in determining the efficiency of promoter utilization by T3 RNA polymerase. The two termination sites recognized in vitro by bacteriophage T3 RNA polymerase on the T3 genome have been cloned, sequenced, and mapped. Analysis of the DNA nucleotide sequence surrounding the termination site at 59.7 map units indicated that the putative RNA transcript arising from this region can be arranged into a GC-rich stem-loop structure followed by a U-rich 3' tail. However, a major fraction of T3 RNA polymerase molecules read through this terminator in vitro to transcribe regions of T3 DNA beyond this terminator. In contrast to termination at 59.7 map units, termination of transcription at 100 T3 map units does not occur in response to any putative terminator structure or sequence. Rather, T3 RNA polymerase transcribes through the terminal repeat region to the end of T3 DNA molecules to yield run-off transcripts.",
author = "D. Sengupta and D. Chakravarti and U. Maitra",
year = "1989",
language = "English (US)",
volume = "264",
pages = "14246--14255",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "24",

}

TY - JOUR

T1 - Relative efficiency of utilization of promoter and termination sites by bacteriophage T3 RNA polymerase

AU - Sengupta, D.

AU - Chakravarti, D.

AU - Maitra, U.

PY - 1989

Y1 - 1989

N2 - Bacteriophage T3 RNA polymerase promoters have been classified as class II and class III on the basis of their relative location in T3 DNA as well as on the function of the protein products encoded by the messages transcribed from them. In the present work, the efficiency of utilization of several class II and class III promoters by bacteriophage T3 RNA polymerase was compared with regard to (a) rate of initiation of transcription as determined by [32P]PP(i) exchange with GTP; (b) complex formation between polymerase and promoters in the presence of GTP; and (c) competition between different promoters for T3 RNA polymerase in a standard transcription assay. The results of these experiments indicated that the class II promoters at 1.05 and 22.8 T3 map units, whose promoter sequences are remarkably similar to the consensus class III promoter sequences, are nearly as strong as typical class III promoters. In contrast, the class II promoter at 14.3 T3 map units, whose promoter sequence differs from the consensus class III promoter sequence by having a C:G base pair instead of a usual A:T base pair at the -1 position, was considerably weaker than the class III promoter. When the C:G base pair at this position was changed to A:T using site-directed mutagenesis, the rate of initiation of RNA synthesis from the mutant promoter was similar to that of a typical class III promoter. In agreement with this observation, it was observed that changing the A:T base pair at the -1 position of a strong class II promoter, at 1.05 T3 map units, to C:G decreased the rate of RNA synthesis from this promoter by about 65%. These observations indicate that the nucleotide residues at the -1 position play a critical role in determining the efficiency of promoter utilization by T3 RNA polymerase. The two termination sites recognized in vitro by bacteriophage T3 RNA polymerase on the T3 genome have been cloned, sequenced, and mapped. Analysis of the DNA nucleotide sequence surrounding the termination site at 59.7 map units indicated that the putative RNA transcript arising from this region can be arranged into a GC-rich stem-loop structure followed by a U-rich 3' tail. However, a major fraction of T3 RNA polymerase molecules read through this terminator in vitro to transcribe regions of T3 DNA beyond this terminator. In contrast to termination at 59.7 map units, termination of transcription at 100 T3 map units does not occur in response to any putative terminator structure or sequence. Rather, T3 RNA polymerase transcribes through the terminal repeat region to the end of T3 DNA molecules to yield run-off transcripts.

AB - Bacteriophage T3 RNA polymerase promoters have been classified as class II and class III on the basis of their relative location in T3 DNA as well as on the function of the protein products encoded by the messages transcribed from them. In the present work, the efficiency of utilization of several class II and class III promoters by bacteriophage T3 RNA polymerase was compared with regard to (a) rate of initiation of transcription as determined by [32P]PP(i) exchange with GTP; (b) complex formation between polymerase and promoters in the presence of GTP; and (c) competition between different promoters for T3 RNA polymerase in a standard transcription assay. The results of these experiments indicated that the class II promoters at 1.05 and 22.8 T3 map units, whose promoter sequences are remarkably similar to the consensus class III promoter sequences, are nearly as strong as typical class III promoters. In contrast, the class II promoter at 14.3 T3 map units, whose promoter sequence differs from the consensus class III promoter sequence by having a C:G base pair instead of a usual A:T base pair at the -1 position, was considerably weaker than the class III promoter. When the C:G base pair at this position was changed to A:T using site-directed mutagenesis, the rate of initiation of RNA synthesis from the mutant promoter was similar to that of a typical class III promoter. In agreement with this observation, it was observed that changing the A:T base pair at the -1 position of a strong class II promoter, at 1.05 T3 map units, to C:G decreased the rate of RNA synthesis from this promoter by about 65%. These observations indicate that the nucleotide residues at the -1 position play a critical role in determining the efficiency of promoter utilization by T3 RNA polymerase. The two termination sites recognized in vitro by bacteriophage T3 RNA polymerase on the T3 genome have been cloned, sequenced, and mapped. Analysis of the DNA nucleotide sequence surrounding the termination site at 59.7 map units indicated that the putative RNA transcript arising from this region can be arranged into a GC-rich stem-loop structure followed by a U-rich 3' tail. However, a major fraction of T3 RNA polymerase molecules read through this terminator in vitro to transcribe regions of T3 DNA beyond this terminator. In contrast to termination at 59.7 map units, termination of transcription at 100 T3 map units does not occur in response to any putative terminator structure or sequence. Rather, T3 RNA polymerase transcribes through the terminal repeat region to the end of T3 DNA molecules to yield run-off transcripts.

UR - http://www.scopus.com/inward/record.url?scp=0024350062&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024350062&partnerID=8YFLogxK

M3 - Article

C2 - 2547791

AN - SCOPUS:0024350062

VL - 264

SP - 14246

EP - 14255

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 24

ER -