TY - JOUR
T1 - Regulated expression of an intestinal mucin gene in HT29 colonic carcinoma cells
AU - Velcich, A.
AU - Augenlicht, L. H.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1993
Y1 - 1993
N2 - We have investigated the regulation of the intestinal mucin gene MUC2 in HT29 cells. Surprisingly, sodium butyrate, an effective inducer of aspects of colonic cell differentiation in HT29 cells, fails to induce MUC2 during short-term exposure, despite the fact that it has been used to select stably differentiated clones of HT29 that resemble goblet cells and produce mucin. However, 12-O-tetradecanoylphorbol-13-acetate and forskolin, which trigger the protein kinase C- and A-dependent signal transduction pathways, respectively, are potent inducers of MUC2 gene expression. 12-O- Tetradecanoylphorbol-13-acetate and forskolin operate through distinct mechanisms, with the former requiring de novo protein synthesis and the latter not. Experiments using specific protein kinase inhibitors suggest that both inducers operate by triggering their respective signal transduction pathways. Nuclear run-off analyses suggest that post-transcriptional (rather than transcriptional) mechanisms are important in the accumulation of MUC2 mRNA. Finally, we show that in several cell lines from human mucinous tumors, characterized by elevated levels of mucin production, MUC2 expression is very high and constitutive compared to forskolin-treated HT29 cells. Thus, the different regulation of MUC2 in HT29 cells and in mucinous tumor cell lines may reflect molecular pathways that characterize colon carcinomas of different histology and pathology.
AB - We have investigated the regulation of the intestinal mucin gene MUC2 in HT29 cells. Surprisingly, sodium butyrate, an effective inducer of aspects of colonic cell differentiation in HT29 cells, fails to induce MUC2 during short-term exposure, despite the fact that it has been used to select stably differentiated clones of HT29 that resemble goblet cells and produce mucin. However, 12-O-tetradecanoylphorbol-13-acetate and forskolin, which trigger the protein kinase C- and A-dependent signal transduction pathways, respectively, are potent inducers of MUC2 gene expression. 12-O- Tetradecanoylphorbol-13-acetate and forskolin operate through distinct mechanisms, with the former requiring de novo protein synthesis and the latter not. Experiments using specific protein kinase inhibitors suggest that both inducers operate by triggering their respective signal transduction pathways. Nuclear run-off analyses suggest that post-transcriptional (rather than transcriptional) mechanisms are important in the accumulation of MUC2 mRNA. Finally, we show that in several cell lines from human mucinous tumors, characterized by elevated levels of mucin production, MUC2 expression is very high and constitutive compared to forskolin-treated HT29 cells. Thus, the different regulation of MUC2 in HT29 cells and in mucinous tumor cell lines may reflect molecular pathways that characterize colon carcinomas of different histology and pathology.
UR - http://www.scopus.com/inward/record.url?scp=0027210881&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027210881&partnerID=8YFLogxK
M3 - Article
C2 - 7686147
AN - SCOPUS:0027210881
VL - 268
SP - 13956
EP - 13961
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 19
ER -