Reduction in sensitivity to Cl- channel blockers by HCO3- -CO2 in rabbit cortical collecting duct.

K. Matsuzaki, Victor L. Schuster, J. B. Stokes

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

We examined the ability of HCO3- -CO2 to modify the potency of Cl- channel blockers in the renal cortical collecting duct (CCD) for the following two reasons. 1) From a practical point of view, there is, to our knowledge, no information regarding the effect of the HCO3- -CO2 buffer system on the potency of Cl- channel blockers. 2) We showed in the companion manuscript [Am. J. Physiol. 257 (Cell Physiol. 26): C94-C101, 1989] that HCO3- -CO2 stimulates transepithelial anion exchange in the CCD. Based on precedent in the literature, we postulated that HCO3- stimulates the basolateral membrane Cl- conductance. Here, we demonstrate that several Cl- channel blockers can reduce CCD Cl- self exchange when the solutions are buffered in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES). Concentrations of blockers producing 80% inhibition in HEPES, pH 7.4, produced only 20% inhibition in 25 mM HCO3- -CO2, pH 7.4. The ability of HCO3- -CO2 to reduce blocker potency had an IC50 of only 2 mM. We also examined interactions of HCO3- -CO2 and blockers with regard to the principal cell basolateral Cl- conductance. Blockers did not alter the Rb+ flux, a marker of K+ transport, but did reduce transepithelial conductance (GT), i.e., the blockers inhibited the principal cell basolateral Cl- conductance. As was the case with intercalated cell anion exchange, GT measurements indicated that HCO3- -CO2 impaired the ability of Cl- channel blockers to inhibit the principal cell Cl- conductance.(ABSTRACT TRUNCATED AT 250 WORDS)

Original languageEnglish (US)
JournalThe American journal of physiology
Volume257
Issue number1 Pt 1
StatePublished - Jul 1989
Externally publishedYes

Fingerprint

Rabbits
Anions
HEPES
Manuscripts
Inhibitory Concentration 50
Buffers
Kidney
Membranes

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Reduction in sensitivity to Cl- channel blockers by HCO3- -CO2 in rabbit cortical collecting duct. / Matsuzaki, K.; Schuster, Victor L.; Stokes, J. B.

In: The American journal of physiology, Vol. 257, No. 1 Pt 1, 07.1989.

Research output: Contribution to journalArticle

@article{72a49bc1b6ae40658c1066054d7358cc,
title = "Reduction in sensitivity to Cl- channel blockers by HCO3- -CO2 in rabbit cortical collecting duct.",
abstract = "We examined the ability of HCO3- -CO2 to modify the potency of Cl- channel blockers in the renal cortical collecting duct (CCD) for the following two reasons. 1) From a practical point of view, there is, to our knowledge, no information regarding the effect of the HCO3- -CO2 buffer system on the potency of Cl- channel blockers. 2) We showed in the companion manuscript [Am. J. Physiol. 257 (Cell Physiol. 26): C94-C101, 1989] that HCO3- -CO2 stimulates transepithelial anion exchange in the CCD. Based on precedent in the literature, we postulated that HCO3- stimulates the basolateral membrane Cl- conductance. Here, we demonstrate that several Cl- channel blockers can reduce CCD Cl- self exchange when the solutions are buffered in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES). Concentrations of blockers producing 80{\%} inhibition in HEPES, pH 7.4, produced only 20{\%} inhibition in 25 mM HCO3- -CO2, pH 7.4. The ability of HCO3- -CO2 to reduce blocker potency had an IC50 of only 2 mM. We also examined interactions of HCO3- -CO2 and blockers with regard to the principal cell basolateral Cl- conductance. Blockers did not alter the Rb+ flux, a marker of K+ transport, but did reduce transepithelial conductance (GT), i.e., the blockers inhibited the principal cell basolateral Cl- conductance. As was the case with intercalated cell anion exchange, GT measurements indicated that HCO3- -CO2 impaired the ability of Cl- channel blockers to inhibit the principal cell Cl- conductance.(ABSTRACT TRUNCATED AT 250 WORDS)",
author = "K. Matsuzaki and Schuster, {Victor L.} and Stokes, {J. B.}",
year = "1989",
month = "7",
language = "English (US)",
volume = "257",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "1 Pt 1",

}

TY - JOUR

T1 - Reduction in sensitivity to Cl- channel blockers by HCO3- -CO2 in rabbit cortical collecting duct.

AU - Matsuzaki, K.

AU - Schuster, Victor L.

AU - Stokes, J. B.

PY - 1989/7

Y1 - 1989/7

N2 - We examined the ability of HCO3- -CO2 to modify the potency of Cl- channel blockers in the renal cortical collecting duct (CCD) for the following two reasons. 1) From a practical point of view, there is, to our knowledge, no information regarding the effect of the HCO3- -CO2 buffer system on the potency of Cl- channel blockers. 2) We showed in the companion manuscript [Am. J. Physiol. 257 (Cell Physiol. 26): C94-C101, 1989] that HCO3- -CO2 stimulates transepithelial anion exchange in the CCD. Based on precedent in the literature, we postulated that HCO3- stimulates the basolateral membrane Cl- conductance. Here, we demonstrate that several Cl- channel blockers can reduce CCD Cl- self exchange when the solutions are buffered in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES). Concentrations of blockers producing 80% inhibition in HEPES, pH 7.4, produced only 20% inhibition in 25 mM HCO3- -CO2, pH 7.4. The ability of HCO3- -CO2 to reduce blocker potency had an IC50 of only 2 mM. We also examined interactions of HCO3- -CO2 and blockers with regard to the principal cell basolateral Cl- conductance. Blockers did not alter the Rb+ flux, a marker of K+ transport, but did reduce transepithelial conductance (GT), i.e., the blockers inhibited the principal cell basolateral Cl- conductance. As was the case with intercalated cell anion exchange, GT measurements indicated that HCO3- -CO2 impaired the ability of Cl- channel blockers to inhibit the principal cell Cl- conductance.(ABSTRACT TRUNCATED AT 250 WORDS)

AB - We examined the ability of HCO3- -CO2 to modify the potency of Cl- channel blockers in the renal cortical collecting duct (CCD) for the following two reasons. 1) From a practical point of view, there is, to our knowledge, no information regarding the effect of the HCO3- -CO2 buffer system on the potency of Cl- channel blockers. 2) We showed in the companion manuscript [Am. J. Physiol. 257 (Cell Physiol. 26): C94-C101, 1989] that HCO3- -CO2 stimulates transepithelial anion exchange in the CCD. Based on precedent in the literature, we postulated that HCO3- stimulates the basolateral membrane Cl- conductance. Here, we demonstrate that several Cl- channel blockers can reduce CCD Cl- self exchange when the solutions are buffered in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES). Concentrations of blockers producing 80% inhibition in HEPES, pH 7.4, produced only 20% inhibition in 25 mM HCO3- -CO2, pH 7.4. The ability of HCO3- -CO2 to reduce blocker potency had an IC50 of only 2 mM. We also examined interactions of HCO3- -CO2 and blockers with regard to the principal cell basolateral Cl- conductance. Blockers did not alter the Rb+ flux, a marker of K+ transport, but did reduce transepithelial conductance (GT), i.e., the blockers inhibited the principal cell basolateral Cl- conductance. As was the case with intercalated cell anion exchange, GT measurements indicated that HCO3- -CO2 impaired the ability of Cl- channel blockers to inhibit the principal cell Cl- conductance.(ABSTRACT TRUNCATED AT 250 WORDS)

UR - http://www.scopus.com/inward/record.url?scp=0024707037&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024707037&partnerID=8YFLogxK

M3 - Article

VL - 257

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 1 Pt 1

ER -