Recovery of RNA polymerase III transcription from the glycerol-repressed state: Revisiting the role of protein kinase CK2 in MAF1 phosphoregulation

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Maf1 is a conserved regulator of RNA polymerase (pol) III transcription and is required for transcriptional repression under diverse stress conditions. In yeast, Maf1 function is negatively regulated at seven phosphosites by the overlapping action of protein kinase A (PKA) and the TORC1-regulated kinase Sch9. Under stress conditions, Maf1 is dephosphorylated at these sites leading to its nuclear accumulation, increased association with pol III genes and direct physical interactions with the polymerase which ultimately inhibit transcription. These changes are reversed upon return to optimal growth conditions. Transcription in this system is also regulated by protein kinase CK2. CK2 stimulates pol III transcription in yeast and human cells via phosphorylation of the initiation factor TFIIIB. Recently it was proposed that CK2 phosphorylation of Maf1 is required for reactivation of pol III transcription following growth on glycerol.Wehave examined this hypothesis using two Maf1 mutants (Maf1-id S388A and Maf1-ck20) which lack all of the CK2 phosphosites implicated in the response. Both mutant proteins are phosphoregulated, function normally during repression and transcription is fully restored to the wild-type level upon transfer from glycerol to glucose. Additionally, phostag gel analysis of Maf1 7SA, a functional mutant that cannot be phosphorylated by PKA/Sch9, did not reveal any evidence for differential phosphorylation of Maf1 during carbon source switching. Together, these data do not support the proposed requirement for CK2 phosphorylation of Maf1 during derepression of pol III transcription.

Original languageEnglish (US)
Pages (from-to)30833-30841
Number of pages9
JournalJournal of Biological Chemistry
Volume287
Issue number36
DOIs
StatePublished - Aug 31 2012

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Recovery of RNA polymerase III transcription from the glycerol-repressed state: Revisiting the role of protein kinase CK2 in MAF1 phosphoregulation'. Together they form a unique fingerprint.

Cite this