TY - JOUR
T1 - Recognition of neuroectodermal tumors by melanoma-specific cytotoxic T lymphocytes
T2 - evidence for antigen sharing by tumors derived from the neural crest
AU - Shamamian, Peter
AU - Mancini, Marie
AU - Kawakami, Yutaka
AU - Restifo, Nicholas P.
AU - Rosenberg, Steven A.
AU - Topalian, Suzanne L.
PY - 1994/3
Y1 - 1994/3
N2 - Melanomas from different patients have been shown to express shared tumor antigens, which can be recognized in the context of the appropriate MHC class 1 molecules by cytolytic T cells. To determine if T-cell-defined melanoma antigens are expressed on other tumors of neuroectodermal origin, four melanoma-specific cytotoxic T lymphocyte (CTL) cultures derived from tumor-infiltrating lymphocytes (TIL) were tested for lysis of a panel of 23 HLA-A2+ neuroectodermal tumor cell lines of various histologies, including retinoblastoma (1), neuroblastoma (8), neuroepithelioma (6), astrocytoma (2), neuroglioma (1), and Ewing's sarcoma (5). Low expression of MHC class I and/or ICAM-1 molecules was found on 22 of 23 neuroectodermal tumor lines, and could be enhanced by treatment with interferon γ (IFNγ). Following IFNγ treatment, three Ewing's sarcoma lines were lysed by at least one melanoma TIL culture, and levels of lysis were comparable to melanoma lysis by these TIL. Lysis could be inhibited by monoclonal antibodies directed against MHC class I molecules and against CD3, indicating specific immune recognition of tumor-associated antigens. None of the other neuroectodermal tumors tested were lysed by TIL, but they could be lysed by non-MHC-restricted lymphokine-activated killer cells. This demonstration of immunological cross-reactivity between melanomas and Ewing's sarcomas, two tumors of distinct histological types with a common embryonic origin, has implications for the developmental nature of these CTL-defined tumor antigens. It also raises the possibility that specific antitumor immunotherapies, such as vaccines, may be reactive against more than one form of cancer.
AB - Melanomas from different patients have been shown to express shared tumor antigens, which can be recognized in the context of the appropriate MHC class 1 molecules by cytolytic T cells. To determine if T-cell-defined melanoma antigens are expressed on other tumors of neuroectodermal origin, four melanoma-specific cytotoxic T lymphocyte (CTL) cultures derived from tumor-infiltrating lymphocytes (TIL) were tested for lysis of a panel of 23 HLA-A2+ neuroectodermal tumor cell lines of various histologies, including retinoblastoma (1), neuroblastoma (8), neuroepithelioma (6), astrocytoma (2), neuroglioma (1), and Ewing's sarcoma (5). Low expression of MHC class I and/or ICAM-1 molecules was found on 22 of 23 neuroectodermal tumor lines, and could be enhanced by treatment with interferon γ (IFNγ). Following IFNγ treatment, three Ewing's sarcoma lines were lysed by at least one melanoma TIL culture, and levels of lysis were comparable to melanoma lysis by these TIL. Lysis could be inhibited by monoclonal antibodies directed against MHC class I molecules and against CD3, indicating specific immune recognition of tumor-associated antigens. None of the other neuroectodermal tumors tested were lysed by TIL, but they could be lysed by non-MHC-restricted lymphokine-activated killer cells. This demonstration of immunological cross-reactivity between melanomas and Ewing's sarcomas, two tumors of distinct histological types with a common embryonic origin, has implications for the developmental nature of these CTL-defined tumor antigens. It also raises the possibility that specific antitumor immunotherapies, such as vaccines, may be reactive against more than one form of cancer.
KW - Ewing's sarcoma
KW - Melanoma
KW - Neural crest
KW - Tumor-infiltrating lymphocyte
UR - http://www.scopus.com/inward/record.url?scp=0028279757&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028279757&partnerID=8YFLogxK
U2 - 10.1007/BF01525312
DO - 10.1007/BF01525312
M3 - Article
C2 - 7519127
AN - SCOPUS:0028279757
SN - 0340-7004
VL - 39
SP - 73
EP - 83
JO - Cancer Immunology, Immunotherapy
JF - Cancer Immunology, Immunotherapy
IS - 2
ER -