TY - JOUR
T1 - Quantitative regional cerebral blood flow MRI of animal model of attention-deficit/hyperactivity disorder
AU - Danker, Jared F.
AU - Duong, Timothy Q.
N1 - Funding Information:
This work was supported in part by the NIH (NINDS, R01-NS45879) and the American Heart Association (SDG-0430020N). The Yerkes Imaging Center is supported by an NIH/NCRR base grant (P51RR000165).
PY - 2007/8/31
Y1 - 2007/8/31
N2 - The spontaneously hypertensive rat (SHR) has been widely used as an animal model for attention-deficit/hyperactivity disorder (AD/HD), a developmental disorder that affects 3-5% of school-age children. Quantitative high-resolution (180 × 180 × 1500 μm) perfusion magnetic resonance imaging was performed to evaluate regional CBF in AD/HD rats (SHR, n = 7) and control Wistar Kyoto rats (WKY, n = 9) in the frontal cortex, motor cortex, sensory cortex, corpus callosum, hippocampus, thalamus, globus pallidus, caudoputamen and whole brain. The accuracy of repeated cerebral blood flow (CBF) measurements within animals in these brain regions ranged from 3% to 10% (7 repeated measures) and across animals ranged from 15% to 18% (n = 7 rats), respectively, indicating highly accurate and reproducible CBF measurements. Regional CBF of the SHR were statistically different from those of the WKY rats in all structures analyzed (P < 0.05) except for the caudate putamen (P = 0.09) and the globus pallidus (P = 0.12). Whole brain CBF of the SHR (1.5 ± 0.2 ml/g/min, mean ± S.D.) was ∼ 25% higher than that of the WKY rats (1.2 ± 0.2 ml/g/min), likely due to the hypertensive nature of the AD/HD rat model. Following normalization to eliminate global CBF differences, CBF in the medial prefrontal cortex, a structure thought to be the equivalent of the human dorsolateral prefrontal cortex and widely implicated in AD/HD, was found to be higher in SHR compared to WKY rats (P < 0.05). The only other structure that was found to be statistically different after normalization is the corpus callosum (P < 0.05). Since resting cerebral blood flow is intricately coupled to resting neural activity, these results suggest that there was abnormal resting neural activity in the medial prefrontal cortex and the corpus callosum between the control and AD/HD animals, consistent with the hyperactivity, impulsivity, inattention, and other AD/HD-like behaviors in this animal model.
AB - The spontaneously hypertensive rat (SHR) has been widely used as an animal model for attention-deficit/hyperactivity disorder (AD/HD), a developmental disorder that affects 3-5% of school-age children. Quantitative high-resolution (180 × 180 × 1500 μm) perfusion magnetic resonance imaging was performed to evaluate regional CBF in AD/HD rats (SHR, n = 7) and control Wistar Kyoto rats (WKY, n = 9) in the frontal cortex, motor cortex, sensory cortex, corpus callosum, hippocampus, thalamus, globus pallidus, caudoputamen and whole brain. The accuracy of repeated cerebral blood flow (CBF) measurements within animals in these brain regions ranged from 3% to 10% (7 repeated measures) and across animals ranged from 15% to 18% (n = 7 rats), respectively, indicating highly accurate and reproducible CBF measurements. Regional CBF of the SHR were statistically different from those of the WKY rats in all structures analyzed (P < 0.05) except for the caudate putamen (P = 0.09) and the globus pallidus (P = 0.12). Whole brain CBF of the SHR (1.5 ± 0.2 ml/g/min, mean ± S.D.) was ∼ 25% higher than that of the WKY rats (1.2 ± 0.2 ml/g/min), likely due to the hypertensive nature of the AD/HD rat model. Following normalization to eliminate global CBF differences, CBF in the medial prefrontal cortex, a structure thought to be the equivalent of the human dorsolateral prefrontal cortex and widely implicated in AD/HD, was found to be higher in SHR compared to WKY rats (P < 0.05). The only other structure that was found to be statistically different after normalization is the corpus callosum (P < 0.05). Since resting cerebral blood flow is intricately coupled to resting neural activity, these results suggest that there was abnormal resting neural activity in the medial prefrontal cortex and the corpus callosum between the control and AD/HD animals, consistent with the hyperactivity, impulsivity, inattention, and other AD/HD-like behaviors in this animal model.
KW - ADHD
KW - Arterial spin labeling
KW - CBF
KW - Hypertensive
KW - Prefrontal cortex
KW - fMRI
UR - http://www.scopus.com/inward/record.url?scp=34248193942&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34248193942&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2007.02.082
DO - 10.1016/j.brainres.2007.02.082
M3 - Article
C2 - 17391651
AN - SCOPUS:34248193942
SN - 0006-8993
VL - 1150
SP - 217
EP - 224
JO - Brain Research
JF - Brain Research
IS - 1
ER -