Purification and characterization of the Mycobacterium smegmatis catalase-peroxidase involved in isoniazid activation

Jovita A. Marcinkeviciene, Richard S. Magliozzo, John S. Blanchard

Research output: Contribution to journalArticle

106 Citations (Scopus)

Abstract

The unique antitubercular activity of isoniazid requires that the drug be oxidized by the katG-encoded mycobacterial catalase-peroxidase to an activated drug form. In order to quantitatively assess the catalytic capabilities of the enzyme, the native catalase-peroxidase from Mycobacterium smegmatis was purified over 200-fold to homogeneity. The enzyme was shown to exhibit both catalase and peroxidase activities, and in the presence of either hydrogen peroxide or t-butyl peroxide, was found to catalyze the oxidation of the reduced pyridine nucleotides, NADH and NADPH, as well as artificial peroxidase substrates, at rates between 2.7 and 20 s-1. The homogeneous enzyme exhibited a visible absorbance spectrum typical of ferric heme-containing catalase-peroxidases, with a Soret maximum at 406 nm. Low temperature (10 K) electron paramagnetic resonance spectra in the presence of ethylene glycol revealed a high spin Fe(III) signal with g values of 5.9 and 5.6. The enzyme was very slowly (t1/2 = ∼ 20 min) reduced by dithionite, and the reduced form showed typical spectral changes when either KCN or CO were subsequently added. The M. smegmatis catalase-peroxidase was found to contain 2 heme molecules per tetramer, which were identified as iron protoporphyrin IX by the pyridine hemochromogen assay. The peroxidatic activity was inhibited by KCN, NaN3, isoniazid (isonicotinic acid hydrazide), and its isomer, nicotinic acid hydrazide, but not by 3-amino-1,2,4-triazole. The role of mycobacterial catalase-peroxidases in the oxidative activation of the antitubercular prodrug isoniazid is discussed.

Original languageEnglish (US)
Pages (from-to)22290-22295
Number of pages6
JournalJournal of Biological Chemistry
Volume270
Issue number38
StatePublished - Sep 22 1995

Fingerprint

Mycobacterium smegmatis
Isoniazid
Catalase
Peroxidase
Purification
Chemical activation
Peroxidases
Enzymes
Heme
Amitrole
Dithionite
Sodium Azide
Ethylene Glycol
Peroxides
Electron Spin Resonance Spectroscopy
Prodrugs
Carbon Monoxide
NADP
Isomers
Pharmaceutical Preparations

ASJC Scopus subject areas

  • Biochemistry

Cite this

Purification and characterization of the Mycobacterium smegmatis catalase-peroxidase involved in isoniazid activation. / Marcinkeviciene, Jovita A.; Magliozzo, Richard S.; Blanchard, John S.

In: Journal of Biological Chemistry, Vol. 270, No. 38, 22.09.1995, p. 22290-22295.

Research output: Contribution to journalArticle

@article{98cec6c595a944c19f792796760ed0c5,
title = "Purification and characterization of the Mycobacterium smegmatis catalase-peroxidase involved in isoniazid activation",
abstract = "The unique antitubercular activity of isoniazid requires that the drug be oxidized by the katG-encoded mycobacterial catalase-peroxidase to an activated drug form. In order to quantitatively assess the catalytic capabilities of the enzyme, the native catalase-peroxidase from Mycobacterium smegmatis was purified over 200-fold to homogeneity. The enzyme was shown to exhibit both catalase and peroxidase activities, and in the presence of either hydrogen peroxide or t-butyl peroxide, was found to catalyze the oxidation of the reduced pyridine nucleotides, NADH and NADPH, as well as artificial peroxidase substrates, at rates between 2.7 and 20 s-1. The homogeneous enzyme exhibited a visible absorbance spectrum typical of ferric heme-containing catalase-peroxidases, with a Soret maximum at 406 nm. Low temperature (10 K) electron paramagnetic resonance spectra in the presence of ethylene glycol revealed a high spin Fe(III) signal with g values of 5.9 and 5.6. The enzyme was very slowly (t1/2 = ∼ 20 min) reduced by dithionite, and the reduced form showed typical spectral changes when either KCN or CO were subsequently added. The M. smegmatis catalase-peroxidase was found to contain 2 heme molecules per tetramer, which were identified as iron protoporphyrin IX by the pyridine hemochromogen assay. The peroxidatic activity was inhibited by KCN, NaN3, isoniazid (isonicotinic acid hydrazide), and its isomer, nicotinic acid hydrazide, but not by 3-amino-1,2,4-triazole. The role of mycobacterial catalase-peroxidases in the oxidative activation of the antitubercular prodrug isoniazid is discussed.",
author = "Marcinkeviciene, {Jovita A.} and Magliozzo, {Richard S.} and Blanchard, {John S.}",
year = "1995",
month = "9",
day = "22",
language = "English (US)",
volume = "270",
pages = "22290--22295",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "38",

}

TY - JOUR

T1 - Purification and characterization of the Mycobacterium smegmatis catalase-peroxidase involved in isoniazid activation

AU - Marcinkeviciene, Jovita A.

AU - Magliozzo, Richard S.

AU - Blanchard, John S.

PY - 1995/9/22

Y1 - 1995/9/22

N2 - The unique antitubercular activity of isoniazid requires that the drug be oxidized by the katG-encoded mycobacterial catalase-peroxidase to an activated drug form. In order to quantitatively assess the catalytic capabilities of the enzyme, the native catalase-peroxidase from Mycobacterium smegmatis was purified over 200-fold to homogeneity. The enzyme was shown to exhibit both catalase and peroxidase activities, and in the presence of either hydrogen peroxide or t-butyl peroxide, was found to catalyze the oxidation of the reduced pyridine nucleotides, NADH and NADPH, as well as artificial peroxidase substrates, at rates between 2.7 and 20 s-1. The homogeneous enzyme exhibited a visible absorbance spectrum typical of ferric heme-containing catalase-peroxidases, with a Soret maximum at 406 nm. Low temperature (10 K) electron paramagnetic resonance spectra in the presence of ethylene glycol revealed a high spin Fe(III) signal with g values of 5.9 and 5.6. The enzyme was very slowly (t1/2 = ∼ 20 min) reduced by dithionite, and the reduced form showed typical spectral changes when either KCN or CO were subsequently added. The M. smegmatis catalase-peroxidase was found to contain 2 heme molecules per tetramer, which were identified as iron protoporphyrin IX by the pyridine hemochromogen assay. The peroxidatic activity was inhibited by KCN, NaN3, isoniazid (isonicotinic acid hydrazide), and its isomer, nicotinic acid hydrazide, but not by 3-amino-1,2,4-triazole. The role of mycobacterial catalase-peroxidases in the oxidative activation of the antitubercular prodrug isoniazid is discussed.

AB - The unique antitubercular activity of isoniazid requires that the drug be oxidized by the katG-encoded mycobacterial catalase-peroxidase to an activated drug form. In order to quantitatively assess the catalytic capabilities of the enzyme, the native catalase-peroxidase from Mycobacterium smegmatis was purified over 200-fold to homogeneity. The enzyme was shown to exhibit both catalase and peroxidase activities, and in the presence of either hydrogen peroxide or t-butyl peroxide, was found to catalyze the oxidation of the reduced pyridine nucleotides, NADH and NADPH, as well as artificial peroxidase substrates, at rates between 2.7 and 20 s-1. The homogeneous enzyme exhibited a visible absorbance spectrum typical of ferric heme-containing catalase-peroxidases, with a Soret maximum at 406 nm. Low temperature (10 K) electron paramagnetic resonance spectra in the presence of ethylene glycol revealed a high spin Fe(III) signal with g values of 5.9 and 5.6. The enzyme was very slowly (t1/2 = ∼ 20 min) reduced by dithionite, and the reduced form showed typical spectral changes when either KCN or CO were subsequently added. The M. smegmatis catalase-peroxidase was found to contain 2 heme molecules per tetramer, which were identified as iron protoporphyrin IX by the pyridine hemochromogen assay. The peroxidatic activity was inhibited by KCN, NaN3, isoniazid (isonicotinic acid hydrazide), and its isomer, nicotinic acid hydrazide, but not by 3-amino-1,2,4-triazole. The role of mycobacterial catalase-peroxidases in the oxidative activation of the antitubercular prodrug isoniazid is discussed.

UR - http://www.scopus.com/inward/record.url?scp=0029153735&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029153735&partnerID=8YFLogxK

M3 - Article

C2 - 7673210

AN - SCOPUS:0029153735

VL - 270

SP - 22290

EP - 22295

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 38

ER -