Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways

Shaolin Shi, Pamela Stanley

Research output: Contribution to journalArticle

269 Citations (Scopus)

Abstract

Notch receptor signaling regulates cell growth and differentiation, and core components of Notch signaling pathways are conserved from Drosophila to humans. Fringe glycosyltransferases are crucial modulators of Notch signaling that act on epidermal growth factor (EGF)-like repeats in the Notch receptor extracellular domain. The substrate of Fringe is EGF-O-fucose and the transfer of fucose to Notch by protein O-fucosyltransferase 1 is necessary for Fringe to function. O-fucose also occurs on Cripto and on Notch ligands. Here we show that mouse embryos lacking protein O-fucosyltransferase 1 die at midgestation with severe defects in somitogenesis, vasculogenesis, cardiogenesis, and neurogenesis. The phenotype is similar to that of embryos lacking downstream effectors of all Notch signaling pathways such as presenilins or RBP-Jκ, and is different from Cripto, Notch receptor, Notch ligand, or Fringe null phenotypes. Protein O-fucosyltransferase 1 is therefore an essential core member of Notch signaling pathways in mammals.

Original languageEnglish (US)
Pages (from-to)5234-5239
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume100
Issue number9
DOIs
StatePublished - Apr 29 2003

Fingerprint

Notch Receptors
Fucose
Epidermal Growth Factor
Proteins
Embryonic Structures
Presenilins
Ligands
Phenotype
Glycosyltransferases
Neurogenesis
Drosophila
Cell Differentiation
Mammals
galactoside 2-alpha-L-fucosyltransferase
Growth

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{0c39771e95e043b98440befff3200970,
title = "Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways",
abstract = "Notch receptor signaling regulates cell growth and differentiation, and core components of Notch signaling pathways are conserved from Drosophila to humans. Fringe glycosyltransferases are crucial modulators of Notch signaling that act on epidermal growth factor (EGF)-like repeats in the Notch receptor extracellular domain. The substrate of Fringe is EGF-O-fucose and the transfer of fucose to Notch by protein O-fucosyltransferase 1 is necessary for Fringe to function. O-fucose also occurs on Cripto and on Notch ligands. Here we show that mouse embryos lacking protein O-fucosyltransferase 1 die at midgestation with severe defects in somitogenesis, vasculogenesis, cardiogenesis, and neurogenesis. The phenotype is similar to that of embryos lacking downstream effectors of all Notch signaling pathways such as presenilins or RBP-Jκ, and is different from Cripto, Notch receptor, Notch ligand, or Fringe null phenotypes. Protein O-fucosyltransferase 1 is therefore an essential core member of Notch signaling pathways in mammals.",
author = "Shaolin Shi and Pamela Stanley",
year = "2003",
month = "4",
day = "29",
doi = "10.1073/pnas.0831126100",
language = "English (US)",
volume = "100",
pages = "5234--5239",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "9",

}

TY - JOUR

T1 - Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways

AU - Shi, Shaolin

AU - Stanley, Pamela

PY - 2003/4/29

Y1 - 2003/4/29

N2 - Notch receptor signaling regulates cell growth and differentiation, and core components of Notch signaling pathways are conserved from Drosophila to humans. Fringe glycosyltransferases are crucial modulators of Notch signaling that act on epidermal growth factor (EGF)-like repeats in the Notch receptor extracellular domain. The substrate of Fringe is EGF-O-fucose and the transfer of fucose to Notch by protein O-fucosyltransferase 1 is necessary for Fringe to function. O-fucose also occurs on Cripto and on Notch ligands. Here we show that mouse embryos lacking protein O-fucosyltransferase 1 die at midgestation with severe defects in somitogenesis, vasculogenesis, cardiogenesis, and neurogenesis. The phenotype is similar to that of embryos lacking downstream effectors of all Notch signaling pathways such as presenilins or RBP-Jκ, and is different from Cripto, Notch receptor, Notch ligand, or Fringe null phenotypes. Protein O-fucosyltransferase 1 is therefore an essential core member of Notch signaling pathways in mammals.

AB - Notch receptor signaling regulates cell growth and differentiation, and core components of Notch signaling pathways are conserved from Drosophila to humans. Fringe glycosyltransferases are crucial modulators of Notch signaling that act on epidermal growth factor (EGF)-like repeats in the Notch receptor extracellular domain. The substrate of Fringe is EGF-O-fucose and the transfer of fucose to Notch by protein O-fucosyltransferase 1 is necessary for Fringe to function. O-fucose also occurs on Cripto and on Notch ligands. Here we show that mouse embryos lacking protein O-fucosyltransferase 1 die at midgestation with severe defects in somitogenesis, vasculogenesis, cardiogenesis, and neurogenesis. The phenotype is similar to that of embryos lacking downstream effectors of all Notch signaling pathways such as presenilins or RBP-Jκ, and is different from Cripto, Notch receptor, Notch ligand, or Fringe null phenotypes. Protein O-fucosyltransferase 1 is therefore an essential core member of Notch signaling pathways in mammals.

UR - http://www.scopus.com/inward/record.url?scp=0037547158&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037547158&partnerID=8YFLogxK

U2 - 10.1073/pnas.0831126100

DO - 10.1073/pnas.0831126100

M3 - Article

VL - 100

SP - 5234

EP - 5239

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 9

ER -