Pnictogen-hydride activation by (silox)3Ta (silox = tBu3SiO); Attempts to circumvent the constraints of orbital symmetry in N2 activation

Elliott B. Hulley, Jeffrey B. Bonanno, Peter T. Wolczanski, Thomas R. Cundari, Emil B. Lobkovsky

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Activation of N2 by (silox)3Ta (1, silox = tBu3SiO) to afford (silox)3Ta=N-N=Ta(silox) 3 (12-N2) does not occur despite ΔG°cald = -55.6 kcal/mol because of constraints of orbital symmetry, prompting efforts at an independent synthesis that included a study of REH2 activation (E = N, P, As). Oxidative addition of REH 2 to 1 afforded (silox)3HTaEHR (2-NHR, R = H, Me, nBu, C6H4-p-X (X = H, Me, NMe2); 2-PHR, R = H, Ph; 2-AsHR, R = H, Ph), which underwent 1,2-H2- elimination to form (silox)3Ta=NR (1=NR; R = H, Me, nBu, C6H4-p-X (X = H (X-ray), Me, NMe2, CF 3)), (silox)3Ta=PR (1=PR; R = H, Ph), and (silox) 3Ta=AsR (1=AsR; R = H, Ph). Kinetics revealed NH bond-breaking as critical, and As > N > P rates for (silox)3HTaEHPh (2-EHPh) were attributed to (1) ΔG°calc(N) < ΔG° calc(P) ∼ ΔG°calc(As); (2) similar fractional reaction coordinates (RCs), but with RC shorter for N < P∼As; and (3) stronger TaE bonds for N > P∼As. Calculations of the pnictidenes aided interpretation of UV-vis spectra. Addition of H2NNH2 or H2N-N(cNC2H3Me) to 1 afforded 1=NH, obviating these routes to 12-N2, and formation of (silox)3MeTaNHNH2 (4-NHNH2) and (silox) 3MeTaNH(-cNCHMeCH2) (4-NH(azir)) occurred upon exposure to (silox)3Ta=CH2 (1=CH2). Thermolyses of 4-NHNH2 and 4-NH(azir) yielded [(silox)2TaMe](μ- NαHNβ)(μ-NγHN δH)[Ta(silox)2] (5) and [(silox)3MeTa] (μ-η2-N,N: η1-C-NHNHCH2CH 2CH2)[Ta(κ-O,C-OSitBu2CMe 2CH2)(silox)2] (7, X-ray), respectively. (silox)3Ta=CPPh3 (1=CPPh3, X-ray) was a byproduct from Ph3PCH2 treatment of 1 to give 1=CH 2. Addition of Na(silox) to [(THF)2Cl3Ta] 2(μ-N2) led to [(silox)2ClTa](μ-N 2) (8-Cl), and via subsequent methylation, [(silox) 2MeTa]2(μ-N2) (8-Me); both dimers were thermally stable. Orbital symmetry requirements for N2 capture by 1 and pertinent calculations are given.

Original languageEnglish (US)
Pages (from-to)8524-8544
Number of pages21
JournalInorganic Chemistry
Volume49
Issue number18
DOIs
StatePublished - Sep 20 2010
Externally publishedYes

Fingerprint

Hydrides
hydrides
Chemical activation
activation
X rays
orbitals
symmetry
Thermolysis
Methylation
Dimers
methylation
x rays
Byproducts
elimination
Kinetics
routes
dimers
methylidyne
requirements
kinetics

ASJC Scopus subject areas

  • Inorganic Chemistry
  • Physical and Theoretical Chemistry

Cite this

Pnictogen-hydride activation by (silox)3Ta (silox = tBu3SiO); Attempts to circumvent the constraints of orbital symmetry in N2 activation. / Hulley, Elliott B.; Bonanno, Jeffrey B.; Wolczanski, Peter T.; Cundari, Thomas R.; Lobkovsky, Emil B.

In: Inorganic Chemistry, Vol. 49, No. 18, 20.09.2010, p. 8524-8544.

Research output: Contribution to journalArticle

Hulley, Elliott B. ; Bonanno, Jeffrey B. ; Wolczanski, Peter T. ; Cundari, Thomas R. ; Lobkovsky, Emil B. / Pnictogen-hydride activation by (silox)3Ta (silox = tBu3SiO); Attempts to circumvent the constraints of orbital symmetry in N2 activation. In: Inorganic Chemistry. 2010 ; Vol. 49, No. 18. pp. 8524-8544.
@article{8d46cea5874843ada42542f12a034a20,
title = "Pnictogen-hydride activation by (silox)3Ta (silox = tBu3SiO); Attempts to circumvent the constraints of orbital symmetry in N2 activation",
abstract = "Activation of N2 by (silox)3Ta (1, silox = tBu3SiO) to afford (silox)3Ta=N-N=Ta(silox) 3 (12-N2) does not occur despite ΔG°cald = -55.6 kcal/mol because of constraints of orbital symmetry, prompting efforts at an independent synthesis that included a study of REH2 activation (E = N, P, As). Oxidative addition of REH 2 to 1 afforded (silox)3HTaEHR (2-NHR, R = H, Me, nBu, C6H4-p-X (X = H, Me, NMe2); 2-PHR, R = H, Ph; 2-AsHR, R = H, Ph), which underwent 1,2-H2- elimination to form (silox)3Ta=NR (1=NR; R = H, Me, nBu, C6H4-p-X (X = H (X-ray), Me, NMe2, CF 3)), (silox)3Ta=PR (1=PR; R = H, Ph), and (silox) 3Ta=AsR (1=AsR; R = H, Ph). Kinetics revealed NH bond-breaking as critical, and As > N > P rates for (silox)3HTaEHPh (2-EHPh) were attributed to (1) ΔG°calc(N) < ΔG° calc(P) ∼ ΔG°calc(As); (2) similar fractional reaction coordinates (RCs), but with RC shorter for N < P∼As; and (3) stronger TaE bonds for N > P∼As. Calculations of the pnictidenes aided interpretation of UV-vis spectra. Addition of H2NNH2 or H2N-N(cNC2H3Me) to 1 afforded 1=NH, obviating these routes to 12-N2, and formation of (silox)3MeTaNHNH2 (4-NHNH2) and (silox) 3MeTaNH(-cNCHMeCH2) (4-NH(azir)) occurred upon exposure to (silox)3Ta=CH2 (1=CH2). Thermolyses of 4-NHNH2 and 4-NH(azir) yielded [(silox)2TaMe](μ- NαHNβ)(μ-NγHN δH)[Ta(silox)2] (5) and [(silox)3MeTa] (μ-η2-N,N: η1-C-NHNHCH2CH 2CH2)[Ta(κ-O,C-OSitBu2CMe 2CH2)(silox)2] (7, X-ray), respectively. (silox)3Ta=CPPh3 (1=CPPh3, X-ray) was a byproduct from Ph3PCH2 treatment of 1 to give 1=CH 2. Addition of Na(silox) to [(THF)2Cl3Ta] 2(μ-N2) led to [(silox)2ClTa](μ-N 2) (8-Cl), and via subsequent methylation, [(silox) 2MeTa]2(μ-N2) (8-Me); both dimers were thermally stable. Orbital symmetry requirements for N2 capture by 1 and pertinent calculations are given.",
author = "Hulley, {Elliott B.} and Bonanno, {Jeffrey B.} and Wolczanski, {Peter T.} and Cundari, {Thomas R.} and Lobkovsky, {Emil B.}",
year = "2010",
month = "9",
day = "20",
doi = "10.1021/ic101147x",
language = "English (US)",
volume = "49",
pages = "8524--8544",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "18",

}

TY - JOUR

T1 - Pnictogen-hydride activation by (silox)3Ta (silox = tBu3SiO); Attempts to circumvent the constraints of orbital symmetry in N2 activation

AU - Hulley, Elliott B.

AU - Bonanno, Jeffrey B.

AU - Wolczanski, Peter T.

AU - Cundari, Thomas R.

AU - Lobkovsky, Emil B.

PY - 2010/9/20

Y1 - 2010/9/20

N2 - Activation of N2 by (silox)3Ta (1, silox = tBu3SiO) to afford (silox)3Ta=N-N=Ta(silox) 3 (12-N2) does not occur despite ΔG°cald = -55.6 kcal/mol because of constraints of orbital symmetry, prompting efforts at an independent synthesis that included a study of REH2 activation (E = N, P, As). Oxidative addition of REH 2 to 1 afforded (silox)3HTaEHR (2-NHR, R = H, Me, nBu, C6H4-p-X (X = H, Me, NMe2); 2-PHR, R = H, Ph; 2-AsHR, R = H, Ph), which underwent 1,2-H2- elimination to form (silox)3Ta=NR (1=NR; R = H, Me, nBu, C6H4-p-X (X = H (X-ray), Me, NMe2, CF 3)), (silox)3Ta=PR (1=PR; R = H, Ph), and (silox) 3Ta=AsR (1=AsR; R = H, Ph). Kinetics revealed NH bond-breaking as critical, and As > N > P rates for (silox)3HTaEHPh (2-EHPh) were attributed to (1) ΔG°calc(N) < ΔG° calc(P) ∼ ΔG°calc(As); (2) similar fractional reaction coordinates (RCs), but with RC shorter for N < P∼As; and (3) stronger TaE bonds for N > P∼As. Calculations of the pnictidenes aided interpretation of UV-vis spectra. Addition of H2NNH2 or H2N-N(cNC2H3Me) to 1 afforded 1=NH, obviating these routes to 12-N2, and formation of (silox)3MeTaNHNH2 (4-NHNH2) and (silox) 3MeTaNH(-cNCHMeCH2) (4-NH(azir)) occurred upon exposure to (silox)3Ta=CH2 (1=CH2). Thermolyses of 4-NHNH2 and 4-NH(azir) yielded [(silox)2TaMe](μ- NαHNβ)(μ-NγHN δH)[Ta(silox)2] (5) and [(silox)3MeTa] (μ-η2-N,N: η1-C-NHNHCH2CH 2CH2)[Ta(κ-O,C-OSitBu2CMe 2CH2)(silox)2] (7, X-ray), respectively. (silox)3Ta=CPPh3 (1=CPPh3, X-ray) was a byproduct from Ph3PCH2 treatment of 1 to give 1=CH 2. Addition of Na(silox) to [(THF)2Cl3Ta] 2(μ-N2) led to [(silox)2ClTa](μ-N 2) (8-Cl), and via subsequent methylation, [(silox) 2MeTa]2(μ-N2) (8-Me); both dimers were thermally stable. Orbital symmetry requirements for N2 capture by 1 and pertinent calculations are given.

AB - Activation of N2 by (silox)3Ta (1, silox = tBu3SiO) to afford (silox)3Ta=N-N=Ta(silox) 3 (12-N2) does not occur despite ΔG°cald = -55.6 kcal/mol because of constraints of orbital symmetry, prompting efforts at an independent synthesis that included a study of REH2 activation (E = N, P, As). Oxidative addition of REH 2 to 1 afforded (silox)3HTaEHR (2-NHR, R = H, Me, nBu, C6H4-p-X (X = H, Me, NMe2); 2-PHR, R = H, Ph; 2-AsHR, R = H, Ph), which underwent 1,2-H2- elimination to form (silox)3Ta=NR (1=NR; R = H, Me, nBu, C6H4-p-X (X = H (X-ray), Me, NMe2, CF 3)), (silox)3Ta=PR (1=PR; R = H, Ph), and (silox) 3Ta=AsR (1=AsR; R = H, Ph). Kinetics revealed NH bond-breaking as critical, and As > N > P rates for (silox)3HTaEHPh (2-EHPh) were attributed to (1) ΔG°calc(N) < ΔG° calc(P) ∼ ΔG°calc(As); (2) similar fractional reaction coordinates (RCs), but with RC shorter for N < P∼As; and (3) stronger TaE bonds for N > P∼As. Calculations of the pnictidenes aided interpretation of UV-vis spectra. Addition of H2NNH2 or H2N-N(cNC2H3Me) to 1 afforded 1=NH, obviating these routes to 12-N2, and formation of (silox)3MeTaNHNH2 (4-NHNH2) and (silox) 3MeTaNH(-cNCHMeCH2) (4-NH(azir)) occurred upon exposure to (silox)3Ta=CH2 (1=CH2). Thermolyses of 4-NHNH2 and 4-NH(azir) yielded [(silox)2TaMe](μ- NαHNβ)(μ-NγHN δH)[Ta(silox)2] (5) and [(silox)3MeTa] (μ-η2-N,N: η1-C-NHNHCH2CH 2CH2)[Ta(κ-O,C-OSitBu2CMe 2CH2)(silox)2] (7, X-ray), respectively. (silox)3Ta=CPPh3 (1=CPPh3, X-ray) was a byproduct from Ph3PCH2 treatment of 1 to give 1=CH 2. Addition of Na(silox) to [(THF)2Cl3Ta] 2(μ-N2) led to [(silox)2ClTa](μ-N 2) (8-Cl), and via subsequent methylation, [(silox) 2MeTa]2(μ-N2) (8-Me); both dimers were thermally stable. Orbital symmetry requirements for N2 capture by 1 and pertinent calculations are given.

UR - http://www.scopus.com/inward/record.url?scp=77956507301&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77956507301&partnerID=8YFLogxK

U2 - 10.1021/ic101147x

DO - 10.1021/ic101147x

M3 - Article

VL - 49

SP - 8524

EP - 8544

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 18

ER -