Physical chemistry of intestinal absorption of biliary cholesterol in mice

David Q.H. Wang, Sum P. Lee

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Although many putative sterol transporters influencing cholesterol absorption and physical-chemical factors affecting dietary cholesterol absorption have been extensively investigated, it is still unclear how biliary cholesterol contributes to the regulation of intestinal cholesterol absorption. We studied whether the gallbladder can modulate the microaggregates of cholesterol carriers, which may in turn influence the intestinal absorption of biliary cholesterol. Supersaturated, crystallized, or micellar model biles were delivered via a duodenal catheter to conscious, freely moving C57L mice daily for 2 days. Intestinal uptake and absorption of biliary cholesterol and its fecal excretion, as well as expression levels of intestinal sterol transporters, were analyzed. Cholesterol uptake and absorption by the enterocyte were dramatically reduced in mice treated with crystallized biles compared with supersaturated biles. This correlated with the higher cumulative radioactivity of cholesterol recovered in the feces at 24 hours. Such findings were absent with the added reference compound sitostanol. After removing cholesterol crystals from crystallized biles, micellar biles showed essentially identical effects on intestinal absorption but with lower fecal cholesterol excretion compared with the original samples containing crystals. Expression levels of the jejunal Abcg5 (ATP-binding cassette transporter G5) and Abcg8, but not Npc1l1 (Niemann-Pick C1 like 1), were significantly increased by supersaturated biles compared with crystallized biles. Conclusion: Different physical forms of biliary cholesterol dramatically determine intestinal uptake and absorption of cholesterol. Solid plate-like cholesterol monohydrate crystals in bile are probably not absorbed and are totally excreted in feces from the body. The gallbladder may have a role in regulating cholesterol homeostasis by modulating the physical forms of biliary cholesterol.

Original languageEnglish (US)
Pages (from-to)177-185
Number of pages9
JournalHepatology
Volume48
Issue number1
DOIs
StatePublished - Jul 1 2008
Externally publishedYes

Fingerprint

Physical Chemistry
Intestinal Absorption
Cholesterol
Bile
Sterols
Gallbladder
Feces
Dietary Cholesterol
ATP-Binding Cassette Transporters
Enterocytes

ASJC Scopus subject areas

  • Hepatology

Cite this

Physical chemistry of intestinal absorption of biliary cholesterol in mice. / Wang, David Q.H.; Lee, Sum P.

In: Hepatology, Vol. 48, No. 1, 01.07.2008, p. 177-185.

Research output: Contribution to journalArticle

@article{e6cf61df427349ffa892bc1fae1fca91,
title = "Physical chemistry of intestinal absorption of biliary cholesterol in mice",
abstract = "Although many putative sterol transporters influencing cholesterol absorption and physical-chemical factors affecting dietary cholesterol absorption have been extensively investigated, it is still unclear how biliary cholesterol contributes to the regulation of intestinal cholesterol absorption. We studied whether the gallbladder can modulate the microaggregates of cholesterol carriers, which may in turn influence the intestinal absorption of biliary cholesterol. Supersaturated, crystallized, or micellar model biles were delivered via a duodenal catheter to conscious, freely moving C57L mice daily for 2 days. Intestinal uptake and absorption of biliary cholesterol and its fecal excretion, as well as expression levels of intestinal sterol transporters, were analyzed. Cholesterol uptake and absorption by the enterocyte were dramatically reduced in mice treated with crystallized biles compared with supersaturated biles. This correlated with the higher cumulative radioactivity of cholesterol recovered in the feces at 24 hours. Such findings were absent with the added reference compound sitostanol. After removing cholesterol crystals from crystallized biles, micellar biles showed essentially identical effects on intestinal absorption but with lower fecal cholesterol excretion compared with the original samples containing crystals. Expression levels of the jejunal Abcg5 (ATP-binding cassette transporter G5) and Abcg8, but not Npc1l1 (Niemann-Pick C1 like 1), were significantly increased by supersaturated biles compared with crystallized biles. Conclusion: Different physical forms of biliary cholesterol dramatically determine intestinal uptake and absorption of cholesterol. Solid plate-like cholesterol monohydrate crystals in bile are probably not absorbed and are totally excreted in feces from the body. The gallbladder may have a role in regulating cholesterol homeostasis by modulating the physical forms of biliary cholesterol.",
author = "Wang, {David Q.H.} and Lee, {Sum P.}",
year = "2008",
month = "7",
day = "1",
doi = "10.1002/hep.22286",
language = "English (US)",
volume = "48",
pages = "177--185",
journal = "Hepatology",
issn = "0270-9139",
publisher = "John Wiley and Sons Ltd",
number = "1",

}

TY - JOUR

T1 - Physical chemistry of intestinal absorption of biliary cholesterol in mice

AU - Wang, David Q.H.

AU - Lee, Sum P.

PY - 2008/7/1

Y1 - 2008/7/1

N2 - Although many putative sterol transporters influencing cholesterol absorption and physical-chemical factors affecting dietary cholesterol absorption have been extensively investigated, it is still unclear how biliary cholesterol contributes to the regulation of intestinal cholesterol absorption. We studied whether the gallbladder can modulate the microaggregates of cholesterol carriers, which may in turn influence the intestinal absorption of biliary cholesterol. Supersaturated, crystallized, or micellar model biles were delivered via a duodenal catheter to conscious, freely moving C57L mice daily for 2 days. Intestinal uptake and absorption of biliary cholesterol and its fecal excretion, as well as expression levels of intestinal sterol transporters, were analyzed. Cholesterol uptake and absorption by the enterocyte were dramatically reduced in mice treated with crystallized biles compared with supersaturated biles. This correlated with the higher cumulative radioactivity of cholesterol recovered in the feces at 24 hours. Such findings were absent with the added reference compound sitostanol. After removing cholesterol crystals from crystallized biles, micellar biles showed essentially identical effects on intestinal absorption but with lower fecal cholesterol excretion compared with the original samples containing crystals. Expression levels of the jejunal Abcg5 (ATP-binding cassette transporter G5) and Abcg8, but not Npc1l1 (Niemann-Pick C1 like 1), were significantly increased by supersaturated biles compared with crystallized biles. Conclusion: Different physical forms of biliary cholesterol dramatically determine intestinal uptake and absorption of cholesterol. Solid plate-like cholesterol monohydrate crystals in bile are probably not absorbed and are totally excreted in feces from the body. The gallbladder may have a role in regulating cholesterol homeostasis by modulating the physical forms of biliary cholesterol.

AB - Although many putative sterol transporters influencing cholesterol absorption and physical-chemical factors affecting dietary cholesterol absorption have been extensively investigated, it is still unclear how biliary cholesterol contributes to the regulation of intestinal cholesterol absorption. We studied whether the gallbladder can modulate the microaggregates of cholesterol carriers, which may in turn influence the intestinal absorption of biliary cholesterol. Supersaturated, crystallized, or micellar model biles were delivered via a duodenal catheter to conscious, freely moving C57L mice daily for 2 days. Intestinal uptake and absorption of biliary cholesterol and its fecal excretion, as well as expression levels of intestinal sterol transporters, were analyzed. Cholesterol uptake and absorption by the enterocyte were dramatically reduced in mice treated with crystallized biles compared with supersaturated biles. This correlated with the higher cumulative radioactivity of cholesterol recovered in the feces at 24 hours. Such findings were absent with the added reference compound sitostanol. After removing cholesterol crystals from crystallized biles, micellar biles showed essentially identical effects on intestinal absorption but with lower fecal cholesterol excretion compared with the original samples containing crystals. Expression levels of the jejunal Abcg5 (ATP-binding cassette transporter G5) and Abcg8, but not Npc1l1 (Niemann-Pick C1 like 1), were significantly increased by supersaturated biles compared with crystallized biles. Conclusion: Different physical forms of biliary cholesterol dramatically determine intestinal uptake and absorption of cholesterol. Solid plate-like cholesterol monohydrate crystals in bile are probably not absorbed and are totally excreted in feces from the body. The gallbladder may have a role in regulating cholesterol homeostasis by modulating the physical forms of biliary cholesterol.

UR - http://www.scopus.com/inward/record.url?scp=47149096885&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=47149096885&partnerID=8YFLogxK

U2 - 10.1002/hep.22286

DO - 10.1002/hep.22286

M3 - Article

VL - 48

SP - 177

EP - 185

JO - Hepatology

JF - Hepatology

SN - 0270-9139

IS - 1

ER -