Photoisomerization, energy storage, and charge separation: A model for light energy transduction in visual pigments and bacteriorhodopsin

B. Honig, T. Ebrey, Robert Callender, U. Dinur, M. Ottolenghi

Research output: Contribution to journalArticle

232 Citations (Scopus)

Abstract

A simple model for the early events in visual pigments and bacteriorhodopsin is proposed. The model makes use of the likelihood that a negatively charged amino acid forms a salt bridge with the positively charged nitrogen of the retinylic chromophore. The photochemical event is a cis-trans isomerization in visual pigments and a trans-cis isomerization in bacteriorhodopsin, which in each case cleaves the salt bridge and thus separates charge in the interior of the protein. The authors propose that this is how the energy of a photon is transduced into chemical free energy of the primary photoproduct. The use of photoisomerization of a flexible chromophore to achieve charge separation provides a general mechanism which may be applicable to other systems. The authors' model explains many of the fundamental properties of visual pigments and their photoproducts. First, the extraordinarily low rate of thermally populating the ground state of the primary photoproduct, as determined from psychophysical and electrophysiological measurements, is seen as resulting from the large barrier to thermal isomerization about a double bond, perhaps enhanced by electrostatic attraction in the salt bridge. Second, the increase in energy and the spectral red shift that characterize the primary photochemical events are natural consequences of the separation of charge. Proton-dependent processes detected with picosecond techniques are proposed to be ground-state relaxation processes following the primary photochemical event. Finally, the charged groups of the salt bridge, repositioned by photoisomerization, provide a simple mechanism for vectorial proton translocation in bacteriorhodopsin.

Original languageEnglish (US)
Pages (from-to)2503-2507
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume76
Issue number6
DOIs
StatePublished - 1979
Externally publishedYes

Fingerprint

Bacteriorhodopsins
Retinal Pigments
Salts
Light
Protons
Static Electricity
Photons
Nitrogen
Hot Temperature
Amino Acids
Proteins

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{d04e0c645cc749d7a40cd637218117f8,
title = "Photoisomerization, energy storage, and charge separation: A model for light energy transduction in visual pigments and bacteriorhodopsin",
abstract = "A simple model for the early events in visual pigments and bacteriorhodopsin is proposed. The model makes use of the likelihood that a negatively charged amino acid forms a salt bridge with the positively charged nitrogen of the retinylic chromophore. The photochemical event is a cis-trans isomerization in visual pigments and a trans-cis isomerization in bacteriorhodopsin, which in each case cleaves the salt bridge and thus separates charge in the interior of the protein. The authors propose that this is how the energy of a photon is transduced into chemical free energy of the primary photoproduct. The use of photoisomerization of a flexible chromophore to achieve charge separation provides a general mechanism which may be applicable to other systems. The authors' model explains many of the fundamental properties of visual pigments and their photoproducts. First, the extraordinarily low rate of thermally populating the ground state of the primary photoproduct, as determined from psychophysical and electrophysiological measurements, is seen as resulting from the large barrier to thermal isomerization about a double bond, perhaps enhanced by electrostatic attraction in the salt bridge. Second, the increase in energy and the spectral red shift that characterize the primary photochemical events are natural consequences of the separation of charge. Proton-dependent processes detected with picosecond techniques are proposed to be ground-state relaxation processes following the primary photochemical event. Finally, the charged groups of the salt bridge, repositioned by photoisomerization, provide a simple mechanism for vectorial proton translocation in bacteriorhodopsin.",
author = "B. Honig and T. Ebrey and Robert Callender and U. Dinur and M. Ottolenghi",
year = "1979",
doi = "10.1073/pnas.76.6.2503",
language = "English (US)",
volume = "76",
pages = "2503--2507",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "6",

}

TY - JOUR

T1 - Photoisomerization, energy storage, and charge separation

T2 - A model for light energy transduction in visual pigments and bacteriorhodopsin

AU - Honig, B.

AU - Ebrey, T.

AU - Callender, Robert

AU - Dinur, U.

AU - Ottolenghi, M.

PY - 1979

Y1 - 1979

N2 - A simple model for the early events in visual pigments and bacteriorhodopsin is proposed. The model makes use of the likelihood that a negatively charged amino acid forms a salt bridge with the positively charged nitrogen of the retinylic chromophore. The photochemical event is a cis-trans isomerization in visual pigments and a trans-cis isomerization in bacteriorhodopsin, which in each case cleaves the salt bridge and thus separates charge in the interior of the protein. The authors propose that this is how the energy of a photon is transduced into chemical free energy of the primary photoproduct. The use of photoisomerization of a flexible chromophore to achieve charge separation provides a general mechanism which may be applicable to other systems. The authors' model explains many of the fundamental properties of visual pigments and their photoproducts. First, the extraordinarily low rate of thermally populating the ground state of the primary photoproduct, as determined from psychophysical and electrophysiological measurements, is seen as resulting from the large barrier to thermal isomerization about a double bond, perhaps enhanced by electrostatic attraction in the salt bridge. Second, the increase in energy and the spectral red shift that characterize the primary photochemical events are natural consequences of the separation of charge. Proton-dependent processes detected with picosecond techniques are proposed to be ground-state relaxation processes following the primary photochemical event. Finally, the charged groups of the salt bridge, repositioned by photoisomerization, provide a simple mechanism for vectorial proton translocation in bacteriorhodopsin.

AB - A simple model for the early events in visual pigments and bacteriorhodopsin is proposed. The model makes use of the likelihood that a negatively charged amino acid forms a salt bridge with the positively charged nitrogen of the retinylic chromophore. The photochemical event is a cis-trans isomerization in visual pigments and a trans-cis isomerization in bacteriorhodopsin, which in each case cleaves the salt bridge and thus separates charge in the interior of the protein. The authors propose that this is how the energy of a photon is transduced into chemical free energy of the primary photoproduct. The use of photoisomerization of a flexible chromophore to achieve charge separation provides a general mechanism which may be applicable to other systems. The authors' model explains many of the fundamental properties of visual pigments and their photoproducts. First, the extraordinarily low rate of thermally populating the ground state of the primary photoproduct, as determined from psychophysical and electrophysiological measurements, is seen as resulting from the large barrier to thermal isomerization about a double bond, perhaps enhanced by electrostatic attraction in the salt bridge. Second, the increase in energy and the spectral red shift that characterize the primary photochemical events are natural consequences of the separation of charge. Proton-dependent processes detected with picosecond techniques are proposed to be ground-state relaxation processes following the primary photochemical event. Finally, the charged groups of the salt bridge, repositioned by photoisomerization, provide a simple mechanism for vectorial proton translocation in bacteriorhodopsin.

UR - http://www.scopus.com/inward/record.url?scp=0009643868&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0009643868&partnerID=8YFLogxK

U2 - 10.1073/pnas.76.6.2503

DO - 10.1073/pnas.76.6.2503

M3 - Article

C2 - 288039

AN - SCOPUS:0009643868

VL - 76

SP - 2503

EP - 2507

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 6

ER -