Oligomerization of opioid receptors with β2-adrenergic receptors: A role in trafficking and mitogen-activated protein kinase activation

Bryen A. Jordan, N. Trapaidze, I. Gomes, R. Nivarthi, L. A. Devi

Research output: Contribution to journalArticle

282 Citations (Scopus)

Abstract

G-protein-coupled receptors (GPCRs) have recently joined the list of cell surface receptors that dimerize. Dimerization has been shown to alter the ligand-binding, signaling, and trafficking properties of these receptors. Recent studies have shown that GPCRs heterodimerize with closely related members, resulting in the modulation of their function. In this study, we have attempted to determine whether members of GPCR superfamilies that couple to different families of G-proteins can associate and form oligomers. We chose the β2 adrenergic receptor that couples to stimulatory G-proteins and δ & κ opioid receptors that couple to inhibitory G-proteins. β2 and δ receptors undergo robust agonist-mediated endocytosis, whereas κ receptors do not. We find that when coexpressed, β2 receptors can form heteromeric complexes with both δ and κ receptors. This heterooligomerization does not significantly alter the ligand binding or coupling properties of the receptors. However, it affects the trafficking properties of the receptors. For example, we find that δ receptors, when coexpressed with β2 receptors, undergo isoproterenol-mediated endocytosis. Conversely, β2 receptors in these cells undergo etorphine-mediated endocytosis. However, β2 receptors, when coexpressed with κ receptors, undergo neither opioid- nor isoproterenol-mediated endocytosis. Moreover, these cells exhibit a substantial decrease in the isoproterenol-induced phosphorylation of mitogen-activated protein kinases. Taken together, these results provide direct evidence of heteromerization of GPCRs that couple to different types of G-proteins, which results in the modulation of receptor trafficking and signal transduction.

Original languageEnglish (US)
Pages (from-to)343-348
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume98
Issue number1
DOIs
StatePublished - Jan 2 2001
Externally publishedYes

Fingerprint

Opioid Receptors
G-Protein-Coupled Receptors
Endocytosis
Mitogen-Activated Protein Kinases
GTP-Binding Proteins
Adrenergic Receptors
Isoproterenol
Etorphine
Ligands
Cell Surface Receptors
Dimerization
Opioid Analgesics
Signal Transduction
Phosphorylation

Keywords

  • Dimers
  • Endocytosis
  • G-protein-coupled receptor
  • Heterodimerization
  • Receptor subtypes

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{83ace3be9061436ab96ae1c5cc627046,
title = "Oligomerization of opioid receptors with β2-adrenergic receptors: A role in trafficking and mitogen-activated protein kinase activation",
abstract = "G-protein-coupled receptors (GPCRs) have recently joined the list of cell surface receptors that dimerize. Dimerization has been shown to alter the ligand-binding, signaling, and trafficking properties of these receptors. Recent studies have shown that GPCRs heterodimerize with closely related members, resulting in the modulation of their function. In this study, we have attempted to determine whether members of GPCR superfamilies that couple to different families of G-proteins can associate and form oligomers. We chose the β2 adrenergic receptor that couples to stimulatory G-proteins and δ & κ opioid receptors that couple to inhibitory G-proteins. β2 and δ receptors undergo robust agonist-mediated endocytosis, whereas κ receptors do not. We find that when coexpressed, β2 receptors can form heteromeric complexes with both δ and κ receptors. This heterooligomerization does not significantly alter the ligand binding or coupling properties of the receptors. However, it affects the trafficking properties of the receptors. For example, we find that δ receptors, when coexpressed with β2 receptors, undergo isoproterenol-mediated endocytosis. Conversely, β2 receptors in these cells undergo etorphine-mediated endocytosis. However, β2 receptors, when coexpressed with κ receptors, undergo neither opioid- nor isoproterenol-mediated endocytosis. Moreover, these cells exhibit a substantial decrease in the isoproterenol-induced phosphorylation of mitogen-activated protein kinases. Taken together, these results provide direct evidence of heteromerization of GPCRs that couple to different types of G-proteins, which results in the modulation of receptor trafficking and signal transduction.",
keywords = "Dimers, Endocytosis, G-protein-coupled receptor, Heterodimerization, Receptor subtypes",
author = "Jordan, {Bryen A.} and N. Trapaidze and I. Gomes and R. Nivarthi and Devi, {L. A.}",
year = "2001",
month = "1",
day = "2",
doi = "10.1073/pnas.011384898",
language = "English (US)",
volume = "98",
pages = "343--348",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "1",

}

TY - JOUR

T1 - Oligomerization of opioid receptors with β2-adrenergic receptors

T2 - A role in trafficking and mitogen-activated protein kinase activation

AU - Jordan, Bryen A.

AU - Trapaidze, N.

AU - Gomes, I.

AU - Nivarthi, R.

AU - Devi, L. A.

PY - 2001/1/2

Y1 - 2001/1/2

N2 - G-protein-coupled receptors (GPCRs) have recently joined the list of cell surface receptors that dimerize. Dimerization has been shown to alter the ligand-binding, signaling, and trafficking properties of these receptors. Recent studies have shown that GPCRs heterodimerize with closely related members, resulting in the modulation of their function. In this study, we have attempted to determine whether members of GPCR superfamilies that couple to different families of G-proteins can associate and form oligomers. We chose the β2 adrenergic receptor that couples to stimulatory G-proteins and δ & κ opioid receptors that couple to inhibitory G-proteins. β2 and δ receptors undergo robust agonist-mediated endocytosis, whereas κ receptors do not. We find that when coexpressed, β2 receptors can form heteromeric complexes with both δ and κ receptors. This heterooligomerization does not significantly alter the ligand binding or coupling properties of the receptors. However, it affects the trafficking properties of the receptors. For example, we find that δ receptors, when coexpressed with β2 receptors, undergo isoproterenol-mediated endocytosis. Conversely, β2 receptors in these cells undergo etorphine-mediated endocytosis. However, β2 receptors, when coexpressed with κ receptors, undergo neither opioid- nor isoproterenol-mediated endocytosis. Moreover, these cells exhibit a substantial decrease in the isoproterenol-induced phosphorylation of mitogen-activated protein kinases. Taken together, these results provide direct evidence of heteromerization of GPCRs that couple to different types of G-proteins, which results in the modulation of receptor trafficking and signal transduction.

AB - G-protein-coupled receptors (GPCRs) have recently joined the list of cell surface receptors that dimerize. Dimerization has been shown to alter the ligand-binding, signaling, and trafficking properties of these receptors. Recent studies have shown that GPCRs heterodimerize with closely related members, resulting in the modulation of their function. In this study, we have attempted to determine whether members of GPCR superfamilies that couple to different families of G-proteins can associate and form oligomers. We chose the β2 adrenergic receptor that couples to stimulatory G-proteins and δ & κ opioid receptors that couple to inhibitory G-proteins. β2 and δ receptors undergo robust agonist-mediated endocytosis, whereas κ receptors do not. We find that when coexpressed, β2 receptors can form heteromeric complexes with both δ and κ receptors. This heterooligomerization does not significantly alter the ligand binding or coupling properties of the receptors. However, it affects the trafficking properties of the receptors. For example, we find that δ receptors, when coexpressed with β2 receptors, undergo isoproterenol-mediated endocytosis. Conversely, β2 receptors in these cells undergo etorphine-mediated endocytosis. However, β2 receptors, when coexpressed with κ receptors, undergo neither opioid- nor isoproterenol-mediated endocytosis. Moreover, these cells exhibit a substantial decrease in the isoproterenol-induced phosphorylation of mitogen-activated protein kinases. Taken together, these results provide direct evidence of heteromerization of GPCRs that couple to different types of G-proteins, which results in the modulation of receptor trafficking and signal transduction.

KW - Dimers

KW - Endocytosis

KW - G-protein-coupled receptor

KW - Heterodimerization

KW - Receptor subtypes

UR - http://www.scopus.com/inward/record.url?scp=0035793079&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035793079&partnerID=8YFLogxK

U2 - 10.1073/pnas.011384898

DO - 10.1073/pnas.011384898

M3 - Article

C2 - 11134510

AN - SCOPUS:0035793079

VL - 98

SP - 343

EP - 348

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 1

ER -