Neutrophil proteomic analysis reveals the participation of antioxidant enzymes, motility and ribosomal proteins in the prevention of ischemic effects by preconditioning

S. Arshid, M. Tahir, B. Fontes, E. F.S. Montero, M. S. Castro, S. Sidoli, V. Schwämmle, P. Roepstorff, W. Fontes

Research output: Contribution to journalArticle

4 Scopus citations

Abstract

Intestinal ischemia and reperfusion injury are widely used models, which result into tissue injury and multiple organ failure also observed after trauma and surgery. Ischemic preconditioning (IPC) preceding ischemia and reperfusion (IR) was shown to attenuate this injury and has a potential therapeutic application; however the exact underlying mechanism is not clear. Neutrophils play an important role in the mechanism of injuries caused by ischemia and reperfusion while IPC led to a decrease in neutrophil stimulation and activation. The effect of preconditioning on the neutrophil proteome is unclear. Proteomic analysis has been ratified as an appropriate tool for studying complex systems. In order to evaluate the effect of IPC preceding 45 min of ischemia on the proteome of neutrophils we used Wistar rats divided in four experimental groups: Control, sham laparotomy, intestinal ischemia reperfusion and ischemic preconditioning. After neutrophil separation, proteins were extracted, trypsin digested and the resulting peptides were iTRAQ labeled followed by HILIC fractionation and nLC-MS/MS analysis. After database searches, normalization and statistical analysis our proteomic analysis resulted in the identification of 2437 protein groups that were assigned to five different clusters based on the relative abundance profiles among the experimental groups. The clustering followed by statistical analysis led to the identification of significantly up and downregulated proteins in IR and IPC. Cluster based KEGG pathways analysis revealed up- regulation of actin cytoskeleton, metabolism, Fc gamma R mediated phagocytosis, chemokine signaling, focal adhesion and leukocyte transendothelial migration whereas downregulation in ribosome, spliceosome, RNA transport, protein processing in endoplasmic reticulum and proteasome, after intestinal ischemic preconditioning. Furthermore, enzyme prediction analysis revealed the regulation of some important antioxidant enzymes and having their role in reactive oxygen species production. To our knowledge, this work describes the most comprehensive and detailed quantitative proteomic study of the neutrophil showing the beneficial role of ischemic preconditioning and its effects on the neutrophil proteome. This data will be helpful to understand the effect of underlying protective mechanisms modulating the role of PMNs after IPC and provide a trustworthy basis for future studies. Biological significance Preconditioning is a relevant strategy to overcome clinical implications from ischemia and reperfusion. Such implications have the neutrophil as a major player. Although many publications describe specific biochemical and physiological roles of the neutrophil in such conditions, there is no report of a proteomic study providing a broader view of this scenario. Here we describe a group of proteins significantly regulated by ischemia and reperfusion being such regulation prevented by preconditioning. Such finding may provide relevant information for a deeper understanding of the mechanisms involved, as well as serve as basis for future biomarker or drug target assays.

Original languageEnglish (US)
Pages (from-to)162-173
Number of pages12
JournalJournal of Proteomics
Volume151
DOIs
Publication statusPublished - Jan 16 2017
Externally publishedYes

    Fingerprint

Keywords

  • Inflammation
  • Ischemia
  • Neutrophil
  • Pathway analysis
  • Preconditioning
  • Proteins

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry

Cite this