Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration

Cheng Zhang, Bo Lei, Tim T. Lam, Fang Yang, Debasish Sinha, Mark O M Tso

Research output: Contribution to journalArticle

77 Citations (Scopus)

Abstract

PURPOSE. Microglial cells have been found to play pivotal roles in various neuronal degenerative diseases such as Parkinson's and Alzheimer's diseases. Minocycline, a microglial inhibitor, has recently been shown to be neuroprotective in various models of cerebral ischemia and degenerative diseases of the brain. This study was conducted to evaluate the neuroprotective effect of minocycline and the role of microglia in light-induced retinal degeneration. METHODS. BALB/cJ mice were exposed to intense green light for 3 hours and observed during 1, 3, or 7 days of dark recovery. The animals received intraperitoneal injections of minocycline or vehicle 1 day before exposure to light for 2, 4, or 8 days, depending on the periods of survival. Morphologic, morphometric, immunohistochemical, and electrophysiological studies were performed to evaluate the efficacy of minocycline in the amelioration of light-induced retinal degeneration and the possible involvement of microglial cells. RESULTS. Minocycline treatment provided marked amelioration in the loss of photoreceptors in light-induced retinal degeneration, as evidenced by morphologic, morphometric, and electrophysiologic criteria. Morphologically, the minocycline-treated group showed markedly better preservation of the outer retina after exposure to light. Morphometrically, at 7 days after exposure to light, in the minocycline-treated animals, 89.1% of the normal-appearing photoreceptor nuclei remained, but in the retinas of the vehicle-control group only 38.0% of these nuclei remained. This difference was statistically significant (P < 0.001). At 7 days after exposure to light electroretinography (ERG) showed that minocycline significantly preserved the amplitudes of dark-adapted a- and b-wave and light-adapted b-wave, which were all significantly reduced after exposure to light. Concomitant with this protective effect, at 3 days after exposure to light, the CD11b+ microglial cells in the outer nuclear layer (ONL) and subretinal space in the minocycline-treated group were significantly decreased (by 63.5%) when compared with those in the light-exposed, vehicle-treated control group (P < 0.01). CONCLUSIONS. Minocycline is neuroprotective against light-induced loss of photoreceptors, possibly through the inhibition of retinal microglial activation.

Original languageEnglish (US)
Pages (from-to)2753-2759
Number of pages7
JournalInvestigative Ophthalmology and Visual Science
Volume45
Issue number8
DOIs
StatePublished - Aug 2004
Externally publishedYes

Fingerprint

Retinal Degeneration
Minocycline
Light
Retina
Neuroprotection
Electroretinography
Methyl Green
Control Groups
Microglia
Brain Diseases
Neuroprotective Agents
Intraperitoneal Injections
Brain Ischemia
Parkinson Disease
Alzheimer Disease

ASJC Scopus subject areas

  • Ophthalmology

Cite this

Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration. / Zhang, Cheng; Lei, Bo; Lam, Tim T.; Yang, Fang; Sinha, Debasish; Tso, Mark O M.

In: Investigative Ophthalmology and Visual Science, Vol. 45, No. 8, 08.2004, p. 2753-2759.

Research output: Contribution to journalArticle

Zhang, Cheng ; Lei, Bo ; Lam, Tim T. ; Yang, Fang ; Sinha, Debasish ; Tso, Mark O M. / Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration. In: Investigative Ophthalmology and Visual Science. 2004 ; Vol. 45, No. 8. pp. 2753-2759.
@article{831174d5a9e245bb8b5b7914dbd62820,
title = "Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration",
abstract = "PURPOSE. Microglial cells have been found to play pivotal roles in various neuronal degenerative diseases such as Parkinson's and Alzheimer's diseases. Minocycline, a microglial inhibitor, has recently been shown to be neuroprotective in various models of cerebral ischemia and degenerative diseases of the brain. This study was conducted to evaluate the neuroprotective effect of minocycline and the role of microglia in light-induced retinal degeneration. METHODS. BALB/cJ mice were exposed to intense green light for 3 hours and observed during 1, 3, or 7 days of dark recovery. The animals received intraperitoneal injections of minocycline or vehicle 1 day before exposure to light for 2, 4, or 8 days, depending on the periods of survival. Morphologic, morphometric, immunohistochemical, and electrophysiological studies were performed to evaluate the efficacy of minocycline in the amelioration of light-induced retinal degeneration and the possible involvement of microglial cells. RESULTS. Minocycline treatment provided marked amelioration in the loss of photoreceptors in light-induced retinal degeneration, as evidenced by morphologic, morphometric, and electrophysiologic criteria. Morphologically, the minocycline-treated group showed markedly better preservation of the outer retina after exposure to light. Morphometrically, at 7 days after exposure to light, in the minocycline-treated animals, 89.1{\%} of the normal-appearing photoreceptor nuclei remained, but in the retinas of the vehicle-control group only 38.0{\%} of these nuclei remained. This difference was statistically significant (P < 0.001). At 7 days after exposure to light electroretinography (ERG) showed that minocycline significantly preserved the amplitudes of dark-adapted a- and b-wave and light-adapted b-wave, which were all significantly reduced after exposure to light. Concomitant with this protective effect, at 3 days after exposure to light, the CD11b+ microglial cells in the outer nuclear layer (ONL) and subretinal space in the minocycline-treated group were significantly decreased (by 63.5{\%}) when compared with those in the light-exposed, vehicle-treated control group (P < 0.01). CONCLUSIONS. Minocycline is neuroprotective against light-induced loss of photoreceptors, possibly through the inhibition of retinal microglial activation.",
author = "Cheng Zhang and Bo Lei and Lam, {Tim T.} and Fang Yang and Debasish Sinha and Tso, {Mark O M}",
year = "2004",
month = "8",
doi = "10.1167/iovs.03-1344",
language = "English (US)",
volume = "45",
pages = "2753--2759",
journal = "Investigative Ophthalmology and Visual Science",
issn = "0146-0404",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "8",

}

TY - JOUR

T1 - Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration

AU - Zhang, Cheng

AU - Lei, Bo

AU - Lam, Tim T.

AU - Yang, Fang

AU - Sinha, Debasish

AU - Tso, Mark O M

PY - 2004/8

Y1 - 2004/8

N2 - PURPOSE. Microglial cells have been found to play pivotal roles in various neuronal degenerative diseases such as Parkinson's and Alzheimer's diseases. Minocycline, a microglial inhibitor, has recently been shown to be neuroprotective in various models of cerebral ischemia and degenerative diseases of the brain. This study was conducted to evaluate the neuroprotective effect of minocycline and the role of microglia in light-induced retinal degeneration. METHODS. BALB/cJ mice were exposed to intense green light for 3 hours and observed during 1, 3, or 7 days of dark recovery. The animals received intraperitoneal injections of minocycline or vehicle 1 day before exposure to light for 2, 4, or 8 days, depending on the periods of survival. Morphologic, morphometric, immunohistochemical, and electrophysiological studies were performed to evaluate the efficacy of minocycline in the amelioration of light-induced retinal degeneration and the possible involvement of microglial cells. RESULTS. Minocycline treatment provided marked amelioration in the loss of photoreceptors in light-induced retinal degeneration, as evidenced by morphologic, morphometric, and electrophysiologic criteria. Morphologically, the minocycline-treated group showed markedly better preservation of the outer retina after exposure to light. Morphometrically, at 7 days after exposure to light, in the minocycline-treated animals, 89.1% of the normal-appearing photoreceptor nuclei remained, but in the retinas of the vehicle-control group only 38.0% of these nuclei remained. This difference was statistically significant (P < 0.001). At 7 days after exposure to light electroretinography (ERG) showed that minocycline significantly preserved the amplitudes of dark-adapted a- and b-wave and light-adapted b-wave, which were all significantly reduced after exposure to light. Concomitant with this protective effect, at 3 days after exposure to light, the CD11b+ microglial cells in the outer nuclear layer (ONL) and subretinal space in the minocycline-treated group were significantly decreased (by 63.5%) when compared with those in the light-exposed, vehicle-treated control group (P < 0.01). CONCLUSIONS. Minocycline is neuroprotective against light-induced loss of photoreceptors, possibly through the inhibition of retinal microglial activation.

AB - PURPOSE. Microglial cells have been found to play pivotal roles in various neuronal degenerative diseases such as Parkinson's and Alzheimer's diseases. Minocycline, a microglial inhibitor, has recently been shown to be neuroprotective in various models of cerebral ischemia and degenerative diseases of the brain. This study was conducted to evaluate the neuroprotective effect of minocycline and the role of microglia in light-induced retinal degeneration. METHODS. BALB/cJ mice were exposed to intense green light for 3 hours and observed during 1, 3, or 7 days of dark recovery. The animals received intraperitoneal injections of minocycline or vehicle 1 day before exposure to light for 2, 4, or 8 days, depending on the periods of survival. Morphologic, morphometric, immunohistochemical, and electrophysiological studies were performed to evaluate the efficacy of minocycline in the amelioration of light-induced retinal degeneration and the possible involvement of microglial cells. RESULTS. Minocycline treatment provided marked amelioration in the loss of photoreceptors in light-induced retinal degeneration, as evidenced by morphologic, morphometric, and electrophysiologic criteria. Morphologically, the minocycline-treated group showed markedly better preservation of the outer retina after exposure to light. Morphometrically, at 7 days after exposure to light, in the minocycline-treated animals, 89.1% of the normal-appearing photoreceptor nuclei remained, but in the retinas of the vehicle-control group only 38.0% of these nuclei remained. This difference was statistically significant (P < 0.001). At 7 days after exposure to light electroretinography (ERG) showed that minocycline significantly preserved the amplitudes of dark-adapted a- and b-wave and light-adapted b-wave, which were all significantly reduced after exposure to light. Concomitant with this protective effect, at 3 days after exposure to light, the CD11b+ microglial cells in the outer nuclear layer (ONL) and subretinal space in the minocycline-treated group were significantly decreased (by 63.5%) when compared with those in the light-exposed, vehicle-treated control group (P < 0.01). CONCLUSIONS. Minocycline is neuroprotective against light-induced loss of photoreceptors, possibly through the inhibition of retinal microglial activation.

UR - http://www.scopus.com/inward/record.url?scp=3242877090&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3242877090&partnerID=8YFLogxK

U2 - 10.1167/iovs.03-1344

DO - 10.1167/iovs.03-1344

M3 - Article

VL - 45

SP - 2753

EP - 2759

JO - Investigative Ophthalmology and Visual Science

JF - Investigative Ophthalmology and Visual Science

SN - 0146-0404

IS - 8

ER -