Neuromechanistic Model of Auditory Bistability

James Rankin, Elyse S. Sussman, John Rinzel

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept—a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition.

Original languageEnglish (US)
Article numbere1004555
JournalPLoS Computational Biology
Volume11
Issue number11
DOIs
StatePublished - Nov 1 2015

Fingerprint

Psychoacoustics
Bistability
Auditory Cortex
Alternation
Noise
Unit
Model
Cortex
Streaming
Modeling
Linkage
Network Model
Experiment
Low Frequency
Irregular
Manipulation
Excitation
modeling
Paradigm
Predict

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Modeling and Simulation
  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Molecular Biology
  • Ecology
  • Cellular and Molecular Neuroscience

Cite this

Neuromechanistic Model of Auditory Bistability. / Rankin, James; Sussman, Elyse S.; Rinzel, John.

In: PLoS Computational Biology, Vol. 11, No. 11, e1004555, 01.11.2015.

Research output: Contribution to journalArticle

Rankin, James ; Sussman, Elyse S. ; Rinzel, John. / Neuromechanistic Model of Auditory Bistability. In: PLoS Computational Biology. 2015 ; Vol. 11, No. 11.
@article{3bf3c0b173764938a7ee0243448b44fd,
title = "Neuromechanistic Model of Auditory Bistability",
abstract = "Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept—a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition.",
author = "James Rankin and Sussman, {Elyse S.} and John Rinzel",
year = "2015",
month = "11",
day = "1",
doi = "10.1371/journal.pcbi.1004555",
language = "English (US)",
volume = "11",
journal = "PLoS Computational Biology",
issn = "1553-734X",
publisher = "Public Library of Science",
number = "11",

}

TY - JOUR

T1 - Neuromechanistic Model of Auditory Bistability

AU - Rankin, James

AU - Sussman, Elyse S.

AU - Rinzel, John

PY - 2015/11/1

Y1 - 2015/11/1

N2 - Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept—a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition.

AB - Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept—a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition.

UR - http://www.scopus.com/inward/record.url?scp=84949257823&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84949257823&partnerID=8YFLogxK

U2 - 10.1371/journal.pcbi.1004555

DO - 10.1371/journal.pcbi.1004555

M3 - Article

C2 - 26562507

AN - SCOPUS:84949257823

VL - 11

JO - PLoS Computational Biology

JF - PLoS Computational Biology

SN - 1553-734X

IS - 11

M1 - e1004555

ER -