Model studies of DNA photorepair: Reduction potentials of thymine and cytosine cyclobutane dimers measured by fluorescence quenching

Michael P. Scannell, David J. Fenick, Syun Ru Yeh, Daniel E. Falvey

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

The interactions of various pyrimidines (1,3-dimethylthymine, DMT, 1,3-bis(N4,N4-dimethylcytosin-1-yl)propane, DMC) and their corresponding cis-syn cyclobutane dimers (DMTD and DMCD) with a series of excited-state electron donors were examined with the goal of understanding the energetics and mechanism of UV repair by DNA photolyase. For each substrate there is a good correlation between the excited state oxidation potential (E(ox)*) and the quenching rate constant (k(q)). The value for k(q) increases as E(ox)* becomes more negative, asymptotically approaching a value that is at or below the solvent diffusion limit. These data all showed good fits to the Rehm-Weller equation. Reduction potentials for each of the substrates could be extracted from this analysis: -2.20 V (vs SCE) for DMTD; -2.14 V for DMT; -2.17 V for DMCD; and -2.16 for DMC. These values show that the initial electron transfer step in the photolyase mechanism is exergonic by ca. 10-15 kcal/mol. Thus these data support the reductive electron transfer mechanism for DNA photolyases proposed by Jorus et al.

Original languageEnglish (US)
Pages (from-to)1971-1977
Number of pages7
JournalJournal of the American Chemical Society
Volume119
Issue number8
DOIs
StatePublished - Feb 26 1997
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Model studies of DNA photorepair: Reduction potentials of thymine and cytosine cyclobutane dimers measured by fluorescence quenching'. Together they form a unique fingerprint.

Cite this