MiR199a-5p inhibits hepatic insulin sensitivity via suppression of ATG14-mediated autophagy article

Bo Li, Xiangsong Wu, Hanbei Chen, Chengle Zhuang, Zhiguo Zhang, Shuangshuang Yao, Dongsheng Cai, Guang Ning, Qing Su

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

MicroRNAs (miRNAs) are known to contribute to many metabolic diseases, including diabetes. In this study, we investigated the role of miR199a-5p in the regulation of hepatic insulin sensitivity. Ad-anti-miR199a-5p adenoviruses were injected into male C57BL/6J WT mice fed a high-fat diet to inhibit miR199a-5p expression before the glucose levels and insulin resistance were assessed. Similarly, Ad-miR199a-5p adenoviruses were injected into male C57BL/6J WT mice to cause the overexpression of miR199a-5p. To investigate the roles of autophagy-related protein 14 (ATG14) and miR199a-5p in the regulation of insulin sensitivity, we injected Ad-miR199a-5p with or without Ad-ATG14 viruses into WT C57BL/6J mice before performing functional assays. Moreover, we infected HepG2 cells or primary hepatocytes with Ad-anti-miR199a-5p or Ad-miR199a-5p viruses to determine the effect of miR199a-5p on insulin resistance in vitro. Finally, we explored the clinical relevance of miR199a-5p by examining the expression level of miR199a-5p in liver samples derived from diabetes patients. We first demonstrated that knocking down miR199a-5p led to decreased glucose tolerance and clearance in vivo, whereas the overexpression of miR199a-5p had the opposite effect. We further identified ATG14 as the target of miR199a-5p, and ATG14 partially rescued miR199a-5p-potentiated glucose and insulin tolerance. In addition, transmission electron microscopy data and western blot data regarding ATG14, LC3 and BECLIN1 illustrated that miR199a-5p regulates autophagy via ATG14. Knocking down miR199a-5p in primary hepatocytes and HepG2 cells suppressed the insulin-stimulated phosphorylation of insulin receptor β, glycogen synthase kinase 3β and protein kinase B, whereas the overexpression of miR199a-5p further potentiated their phosphorylation. Finally, we detected upregulated miR199a-5p levels, which were correlated with reduced ATG14 mRNA levels and downregulated autophagy in liver samples obtained from diabetes patients. Our study uncovered a novel biological role of miR199a-5p in the regulation of hepatic insulin sensitivity via ATG14-mediated autophagy.

Original languageEnglish (US)
Article number405
JournalCell Death and Disease
Volume9
Issue number3
DOIs
StatePublished - Mar 1 2018

Fingerprint

Autophagy
Insulin Resistance
Liver
Hep G2 Cells
Adenoviridae
Glucose
Hepatocytes
Phosphorylation
Insulin
Viruses
Glycogen Synthase Kinase 3
Proto-Oncogene Proteins c-akt
Autophagy-Related Proteins
Metabolic Diseases
Insulin Receptor
High Fat Diet
MicroRNAs
Transmission Electron Microscopy
Inbred C57BL Mouse
Down-Regulation

ASJC Scopus subject areas

  • Immunology
  • Cellular and Molecular Neuroscience
  • Cell Biology
  • Cancer Research

Cite this

MiR199a-5p inhibits hepatic insulin sensitivity via suppression of ATG14-mediated autophagy article. / Li, Bo; Wu, Xiangsong; Chen, Hanbei; Zhuang, Chengle; Zhang, Zhiguo; Yao, Shuangshuang; Cai, Dongsheng; Ning, Guang; Su, Qing.

In: Cell Death and Disease, Vol. 9, No. 3, 405, 01.03.2018.

Research output: Contribution to journalArticle

Li, Bo ; Wu, Xiangsong ; Chen, Hanbei ; Zhuang, Chengle ; Zhang, Zhiguo ; Yao, Shuangshuang ; Cai, Dongsheng ; Ning, Guang ; Su, Qing. / MiR199a-5p inhibits hepatic insulin sensitivity via suppression of ATG14-mediated autophagy article. In: Cell Death and Disease. 2018 ; Vol. 9, No. 3.
@article{905bc9a35d504ba88e62320dc382e2ba,
title = "MiR199a-5p inhibits hepatic insulin sensitivity via suppression of ATG14-mediated autophagy article",
abstract = "MicroRNAs (miRNAs) are known to contribute to many metabolic diseases, including diabetes. In this study, we investigated the role of miR199a-5p in the regulation of hepatic insulin sensitivity. Ad-anti-miR199a-5p adenoviruses were injected into male C57BL/6J WT mice fed a high-fat diet to inhibit miR199a-5p expression before the glucose levels and insulin resistance were assessed. Similarly, Ad-miR199a-5p adenoviruses were injected into male C57BL/6J WT mice to cause the overexpression of miR199a-5p. To investigate the roles of autophagy-related protein 14 (ATG14) and miR199a-5p in the regulation of insulin sensitivity, we injected Ad-miR199a-5p with or without Ad-ATG14 viruses into WT C57BL/6J mice before performing functional assays. Moreover, we infected HepG2 cells or primary hepatocytes with Ad-anti-miR199a-5p or Ad-miR199a-5p viruses to determine the effect of miR199a-5p on insulin resistance in vitro. Finally, we explored the clinical relevance of miR199a-5p by examining the expression level of miR199a-5p in liver samples derived from diabetes patients. We first demonstrated that knocking down miR199a-5p led to decreased glucose tolerance and clearance in vivo, whereas the overexpression of miR199a-5p had the opposite effect. We further identified ATG14 as the target of miR199a-5p, and ATG14 partially rescued miR199a-5p-potentiated glucose and insulin tolerance. In addition, transmission electron microscopy data and western blot data regarding ATG14, LC3 and BECLIN1 illustrated that miR199a-5p regulates autophagy via ATG14. Knocking down miR199a-5p in primary hepatocytes and HepG2 cells suppressed the insulin-stimulated phosphorylation of insulin receptor β, glycogen synthase kinase 3β and protein kinase B, whereas the overexpression of miR199a-5p further potentiated their phosphorylation. Finally, we detected upregulated miR199a-5p levels, which were correlated with reduced ATG14 mRNA levels and downregulated autophagy in liver samples obtained from diabetes patients. Our study uncovered a novel biological role of miR199a-5p in the regulation of hepatic insulin sensitivity via ATG14-mediated autophagy.",
author = "Bo Li and Xiangsong Wu and Hanbei Chen and Chengle Zhuang and Zhiguo Zhang and Shuangshuang Yao and Dongsheng Cai and Guang Ning and Qing Su",
year = "2018",
month = "3",
day = "1",
doi = "10.1038/s41419-018-0439-7",
language = "English (US)",
volume = "9",
journal = "Cell Death and Disease",
issn = "2041-4889",
publisher = "Nature Publishing Group",
number = "3",

}

TY - JOUR

T1 - MiR199a-5p inhibits hepatic insulin sensitivity via suppression of ATG14-mediated autophagy article

AU - Li, Bo

AU - Wu, Xiangsong

AU - Chen, Hanbei

AU - Zhuang, Chengle

AU - Zhang, Zhiguo

AU - Yao, Shuangshuang

AU - Cai, Dongsheng

AU - Ning, Guang

AU - Su, Qing

PY - 2018/3/1

Y1 - 2018/3/1

N2 - MicroRNAs (miRNAs) are known to contribute to many metabolic diseases, including diabetes. In this study, we investigated the role of miR199a-5p in the regulation of hepatic insulin sensitivity. Ad-anti-miR199a-5p adenoviruses were injected into male C57BL/6J WT mice fed a high-fat diet to inhibit miR199a-5p expression before the glucose levels and insulin resistance were assessed. Similarly, Ad-miR199a-5p adenoviruses were injected into male C57BL/6J WT mice to cause the overexpression of miR199a-5p. To investigate the roles of autophagy-related protein 14 (ATG14) and miR199a-5p in the regulation of insulin sensitivity, we injected Ad-miR199a-5p with or without Ad-ATG14 viruses into WT C57BL/6J mice before performing functional assays. Moreover, we infected HepG2 cells or primary hepatocytes with Ad-anti-miR199a-5p or Ad-miR199a-5p viruses to determine the effect of miR199a-5p on insulin resistance in vitro. Finally, we explored the clinical relevance of miR199a-5p by examining the expression level of miR199a-5p in liver samples derived from diabetes patients. We first demonstrated that knocking down miR199a-5p led to decreased glucose tolerance and clearance in vivo, whereas the overexpression of miR199a-5p had the opposite effect. We further identified ATG14 as the target of miR199a-5p, and ATG14 partially rescued miR199a-5p-potentiated glucose and insulin tolerance. In addition, transmission electron microscopy data and western blot data regarding ATG14, LC3 and BECLIN1 illustrated that miR199a-5p regulates autophagy via ATG14. Knocking down miR199a-5p in primary hepatocytes and HepG2 cells suppressed the insulin-stimulated phosphorylation of insulin receptor β, glycogen synthase kinase 3β and protein kinase B, whereas the overexpression of miR199a-5p further potentiated their phosphorylation. Finally, we detected upregulated miR199a-5p levels, which were correlated with reduced ATG14 mRNA levels and downregulated autophagy in liver samples obtained from diabetes patients. Our study uncovered a novel biological role of miR199a-5p in the regulation of hepatic insulin sensitivity via ATG14-mediated autophagy.

AB - MicroRNAs (miRNAs) are known to contribute to many metabolic diseases, including diabetes. In this study, we investigated the role of miR199a-5p in the regulation of hepatic insulin sensitivity. Ad-anti-miR199a-5p adenoviruses were injected into male C57BL/6J WT mice fed a high-fat diet to inhibit miR199a-5p expression before the glucose levels and insulin resistance were assessed. Similarly, Ad-miR199a-5p adenoviruses were injected into male C57BL/6J WT mice to cause the overexpression of miR199a-5p. To investigate the roles of autophagy-related protein 14 (ATG14) and miR199a-5p in the regulation of insulin sensitivity, we injected Ad-miR199a-5p with or without Ad-ATG14 viruses into WT C57BL/6J mice before performing functional assays. Moreover, we infected HepG2 cells or primary hepatocytes with Ad-anti-miR199a-5p or Ad-miR199a-5p viruses to determine the effect of miR199a-5p on insulin resistance in vitro. Finally, we explored the clinical relevance of miR199a-5p by examining the expression level of miR199a-5p in liver samples derived from diabetes patients. We first demonstrated that knocking down miR199a-5p led to decreased glucose tolerance and clearance in vivo, whereas the overexpression of miR199a-5p had the opposite effect. We further identified ATG14 as the target of miR199a-5p, and ATG14 partially rescued miR199a-5p-potentiated glucose and insulin tolerance. In addition, transmission electron microscopy data and western blot data regarding ATG14, LC3 and BECLIN1 illustrated that miR199a-5p regulates autophagy via ATG14. Knocking down miR199a-5p in primary hepatocytes and HepG2 cells suppressed the insulin-stimulated phosphorylation of insulin receptor β, glycogen synthase kinase 3β and protein kinase B, whereas the overexpression of miR199a-5p further potentiated their phosphorylation. Finally, we detected upregulated miR199a-5p levels, which were correlated with reduced ATG14 mRNA levels and downregulated autophagy in liver samples obtained from diabetes patients. Our study uncovered a novel biological role of miR199a-5p in the regulation of hepatic insulin sensitivity via ATG14-mediated autophagy.

UR - http://www.scopus.com/inward/record.url?scp=85044203642&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044203642&partnerID=8YFLogxK

U2 - 10.1038/s41419-018-0439-7

DO - 10.1038/s41419-018-0439-7

M3 - Article

VL - 9

JO - Cell Death and Disease

JF - Cell Death and Disease

SN - 2041-4889

IS - 3

M1 - 405

ER -