Minireview design and interpretation of human sulfotransferase a1 assays

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

The human sulfotransferases (SULTs) regulate the activities of hundreds, if not thousands, of small molecule metabolites via transfer of the sulfuryl-moiety (-SO3) from the nucleotide donor, 39- phosphoadenosine 59-phosphosulfate (PAPS) to the hydroxyls and amines of the recipients. Our understanding of the molecular basis of SULT catalysis has expanded considerably in recent years. The basic kinetic mechanismof these enzymes, previously thought to be ordered, has been redefined as random for SULT2A1, a representative member of the superfamily. An active-site cap whose structure and dynamics are highly responsive to nucleotides was discovered and shown to be critical in determining SULT selectivity, a topic of longstanding interest to the field. We now realize that a given SULT can operate in two specificity modes-broad and narrow-depending on the disposition of the cap. More recent work has revealed that the caps of the SULT1A1 are controlled by homotropic allosteric interactions between PAPS molecules bound at the dimer's active sites. These interactions cause the catalytic efficiency of SULT1A1 to vary in a substrate-dependent fashion by as much as two orders of magnitude over a range of PAPS concentrations that spans those found in human tissues. SULT catalysis is further complicated by the fact that these enzymes are frequently inhibited by their substrates. This review provides an overview of the mechanistic features of SULT1A1 that are important for the design and interpretation of SULT1A1 assays.

Original languageEnglish (US)
Pages (from-to)481-484
Number of pages4
JournalDrug Metabolism and Disposition
Volume44
Issue number4
DOIs
StatePublished - Apr 1 2016

Fingerprint

Sulfotransferases
Phosphoadenosine Phosphosulfate
Catalysis
Catalytic Domain
Nucleotides
Enzymes
Hydroxyl Radical
Amines

ASJC Scopus subject areas

  • Pharmacology
  • Pharmaceutical Science

Cite this

Minireview design and interpretation of human sulfotransferase a1 assays. / Wang, Ting; Cook, Ian T.; Leyh, Thomas S.

In: Drug Metabolism and Disposition, Vol. 44, No. 4, 01.04.2016, p. 481-484.

Research output: Contribution to journalArticle

@article{fb9f1e8f24634260a9fd6bc3371971c8,
title = "Minireview design and interpretation of human sulfotransferase a1 assays",
abstract = "The human sulfotransferases (SULTs) regulate the activities of hundreds, if not thousands, of small molecule metabolites via transfer of the sulfuryl-moiety (-SO3) from the nucleotide donor, 39- phosphoadenosine 59-phosphosulfate (PAPS) to the hydroxyls and amines of the recipients. Our understanding of the molecular basis of SULT catalysis has expanded considerably in recent years. The basic kinetic mechanismof these enzymes, previously thought to be ordered, has been redefined as random for SULT2A1, a representative member of the superfamily. An active-site cap whose structure and dynamics are highly responsive to nucleotides was discovered and shown to be critical in determining SULT selectivity, a topic of longstanding interest to the field. We now realize that a given SULT can operate in two specificity modes-broad and narrow-depending on the disposition of the cap. More recent work has revealed that the caps of the SULT1A1 are controlled by homotropic allosteric interactions between PAPS molecules bound at the dimer's active sites. These interactions cause the catalytic efficiency of SULT1A1 to vary in a substrate-dependent fashion by as much as two orders of magnitude over a range of PAPS concentrations that spans those found in human tissues. SULT catalysis is further complicated by the fact that these enzymes are frequently inhibited by their substrates. This review provides an overview of the mechanistic features of SULT1A1 that are important for the design and interpretation of SULT1A1 assays.",
author = "Ting Wang and Cook, {Ian T.} and Leyh, {Thomas S.}",
year = "2016",
month = "4",
day = "1",
doi = "10.1124/dmd.115.068205",
language = "English (US)",
volume = "44",
pages = "481--484",
journal = "Drug Metabolism and Disposition",
issn = "0090-9556",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "4",

}

TY - JOUR

T1 - Minireview design and interpretation of human sulfotransferase a1 assays

AU - Wang, Ting

AU - Cook, Ian T.

AU - Leyh, Thomas S.

PY - 2016/4/1

Y1 - 2016/4/1

N2 - The human sulfotransferases (SULTs) regulate the activities of hundreds, if not thousands, of small molecule metabolites via transfer of the sulfuryl-moiety (-SO3) from the nucleotide donor, 39- phosphoadenosine 59-phosphosulfate (PAPS) to the hydroxyls and amines of the recipients. Our understanding of the molecular basis of SULT catalysis has expanded considerably in recent years. The basic kinetic mechanismof these enzymes, previously thought to be ordered, has been redefined as random for SULT2A1, a representative member of the superfamily. An active-site cap whose structure and dynamics are highly responsive to nucleotides was discovered and shown to be critical in determining SULT selectivity, a topic of longstanding interest to the field. We now realize that a given SULT can operate in two specificity modes-broad and narrow-depending on the disposition of the cap. More recent work has revealed that the caps of the SULT1A1 are controlled by homotropic allosteric interactions between PAPS molecules bound at the dimer's active sites. These interactions cause the catalytic efficiency of SULT1A1 to vary in a substrate-dependent fashion by as much as two orders of magnitude over a range of PAPS concentrations that spans those found in human tissues. SULT catalysis is further complicated by the fact that these enzymes are frequently inhibited by their substrates. This review provides an overview of the mechanistic features of SULT1A1 that are important for the design and interpretation of SULT1A1 assays.

AB - The human sulfotransferases (SULTs) regulate the activities of hundreds, if not thousands, of small molecule metabolites via transfer of the sulfuryl-moiety (-SO3) from the nucleotide donor, 39- phosphoadenosine 59-phosphosulfate (PAPS) to the hydroxyls and amines of the recipients. Our understanding of the molecular basis of SULT catalysis has expanded considerably in recent years. The basic kinetic mechanismof these enzymes, previously thought to be ordered, has been redefined as random for SULT2A1, a representative member of the superfamily. An active-site cap whose structure and dynamics are highly responsive to nucleotides was discovered and shown to be critical in determining SULT selectivity, a topic of longstanding interest to the field. We now realize that a given SULT can operate in two specificity modes-broad and narrow-depending on the disposition of the cap. More recent work has revealed that the caps of the SULT1A1 are controlled by homotropic allosteric interactions between PAPS molecules bound at the dimer's active sites. These interactions cause the catalytic efficiency of SULT1A1 to vary in a substrate-dependent fashion by as much as two orders of magnitude over a range of PAPS concentrations that spans those found in human tissues. SULT catalysis is further complicated by the fact that these enzymes are frequently inhibited by their substrates. This review provides an overview of the mechanistic features of SULT1A1 that are important for the design and interpretation of SULT1A1 assays.

UR - http://www.scopus.com/inward/record.url?scp=84962244431&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84962244431&partnerID=8YFLogxK

U2 - 10.1124/dmd.115.068205

DO - 10.1124/dmd.115.068205

M3 - Article

VL - 44

SP - 481

EP - 484

JO - Drug Metabolism and Disposition

JF - Drug Metabolism and Disposition

SN - 0090-9556

IS - 4

ER -