Microsporidia: Obligate intracellular pathogens within the fungal kingdom

Bing Han, Louis M. Weiss

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Microsporidia are obligate intracellular pathogens related to Fungi. These organisms have a unique invasion organelle, the polar tube, which upon appropriate environmental stimulation rapidly discharges out of the spore, pierces a host cell's membrane, and serves as a conduit for sporoplasm passage into the host cell. Phylogenetic analysis suggests that microsporidia are related to the Fungi, being either a basal branch or sister group. Despite the description of microsporidia over 150 years ago, we still lack an understanding of the mechanism of invasion, including the role of various polar tube proteins, spore wall proteins, and host cell proteins in the formation and function of the invasion synapse. Recent advances in ultrastructural techniques are helping to better define the formation and functioning of the invasion synapse. Over the past 2 decades, proteomic approaches have helped define polar tube proteins and spore wall proteins as well as the importance of posttranslational modifications such as glycosylation in the functioning of these proteins, but the absence of genetic techniques for the manipulation of microsporidia has hampered research on the function of these various proteins. The study of the mechanism of invasion should provide fundamental insights into the biology of these ubiquitous intracellular pathogens that can be integrated into studies aimed at treating or controlling microsporidiosis.

Original languageEnglish (US)
Article numberFUNK-0018-2016
JournalMicrobiology spectrum
Volume5
Issue number2
DOIs
StatePublished - 2017

Fingerprint

Microsporidia
pathogen
protein
Spores
Proteins
spore
Synapses
Fungi
Microsporidiosis
fungus
Genetic Techniques
proteomics
Post Translational Protein Processing
Glycosylation
Organelles
Proteomics
Cell Membrane
membrane
phylogenetics

ASJC Scopus subject areas

  • Physiology
  • Ecology
  • Immunology and Microbiology(all)
  • Genetics
  • Cell Biology
  • Microbiology (medical)
  • Infectious Diseases

Cite this

Microsporidia : Obligate intracellular pathogens within the fungal kingdom. / Han, Bing; Weiss, Louis M.

In: Microbiology spectrum, Vol. 5, No. 2, FUNK-0018-2016, 2017.

Research output: Contribution to journalArticle

@article{411f68a85c02465384a3277149619aff,
title = "Microsporidia: Obligate intracellular pathogens within the fungal kingdom",
abstract = "Microsporidia are obligate intracellular pathogens related to Fungi. These organisms have a unique invasion organelle, the polar tube, which upon appropriate environmental stimulation rapidly discharges out of the spore, pierces a host cell's membrane, and serves as a conduit for sporoplasm passage into the host cell. Phylogenetic analysis suggests that microsporidia are related to the Fungi, being either a basal branch or sister group. Despite the description of microsporidia over 150 years ago, we still lack an understanding of the mechanism of invasion, including the role of various polar tube proteins, spore wall proteins, and host cell proteins in the formation and function of the invasion synapse. Recent advances in ultrastructural techniques are helping to better define the formation and functioning of the invasion synapse. Over the past 2 decades, proteomic approaches have helped define polar tube proteins and spore wall proteins as well as the importance of posttranslational modifications such as glycosylation in the functioning of these proteins, but the absence of genetic techniques for the manipulation of microsporidia has hampered research on the function of these various proteins. The study of the mechanism of invasion should provide fundamental insights into the biology of these ubiquitous intracellular pathogens that can be integrated into studies aimed at treating or controlling microsporidiosis.",
author = "Bing Han and Weiss, {Louis M.}",
year = "2017",
doi = "10.1128/microbiolspec.FUNK-0018-2016",
language = "English (US)",
volume = "5",
journal = "Microbiology spectrum",
issn = "2165-0497",
publisher = "American Society for Microbiology",
number = "2",

}

TY - JOUR

T1 - Microsporidia

T2 - Obligate intracellular pathogens within the fungal kingdom

AU - Han, Bing

AU - Weiss, Louis M.

PY - 2017

Y1 - 2017

N2 - Microsporidia are obligate intracellular pathogens related to Fungi. These organisms have a unique invasion organelle, the polar tube, which upon appropriate environmental stimulation rapidly discharges out of the spore, pierces a host cell's membrane, and serves as a conduit for sporoplasm passage into the host cell. Phylogenetic analysis suggests that microsporidia are related to the Fungi, being either a basal branch or sister group. Despite the description of microsporidia over 150 years ago, we still lack an understanding of the mechanism of invasion, including the role of various polar tube proteins, spore wall proteins, and host cell proteins in the formation and function of the invasion synapse. Recent advances in ultrastructural techniques are helping to better define the formation and functioning of the invasion synapse. Over the past 2 decades, proteomic approaches have helped define polar tube proteins and spore wall proteins as well as the importance of posttranslational modifications such as glycosylation in the functioning of these proteins, but the absence of genetic techniques for the manipulation of microsporidia has hampered research on the function of these various proteins. The study of the mechanism of invasion should provide fundamental insights into the biology of these ubiquitous intracellular pathogens that can be integrated into studies aimed at treating or controlling microsporidiosis.

AB - Microsporidia are obligate intracellular pathogens related to Fungi. These organisms have a unique invasion organelle, the polar tube, which upon appropriate environmental stimulation rapidly discharges out of the spore, pierces a host cell's membrane, and serves as a conduit for sporoplasm passage into the host cell. Phylogenetic analysis suggests that microsporidia are related to the Fungi, being either a basal branch or sister group. Despite the description of microsporidia over 150 years ago, we still lack an understanding of the mechanism of invasion, including the role of various polar tube proteins, spore wall proteins, and host cell proteins in the formation and function of the invasion synapse. Recent advances in ultrastructural techniques are helping to better define the formation and functioning of the invasion synapse. Over the past 2 decades, proteomic approaches have helped define polar tube proteins and spore wall proteins as well as the importance of posttranslational modifications such as glycosylation in the functioning of these proteins, but the absence of genetic techniques for the manipulation of microsporidia has hampered research on the function of these various proteins. The study of the mechanism of invasion should provide fundamental insights into the biology of these ubiquitous intracellular pathogens that can be integrated into studies aimed at treating or controlling microsporidiosis.

UR - http://www.scopus.com/inward/record.url?scp=85016003806&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85016003806&partnerID=8YFLogxK

U2 - 10.1128/microbiolspec.FUNK-0018-2016

DO - 10.1128/microbiolspec.FUNK-0018-2016

M3 - Article

C2 - 28944750

AN - SCOPUS:85016003806

VL - 5

JO - Microbiology spectrum

JF - Microbiology spectrum

SN - 2165-0497

IS - 2

M1 - FUNK-0018-2016

ER -