TY - JOUR
T1 - Metabolomic Profiling of Cardiac Fibrosis and Steatosis in Women with or at Risk for HIV
AU - Shitole, Sanyog G.
AU - Naveed, Mahim
AU - Wang, Zheng
AU - Wang, Tao
AU - Kato, Yoko
AU - Ambale-Venkatesh, Bharath
AU - Kaplan, Robert C.
AU - Tien, Phyllis C.
AU - Anastos, Kathryn
AU - Lazar, Jason M.
AU - Lima, João A.C.
AU - Qi, Qibin
AU - Kizer, Jorge R.
N1 - Funding Information:
The contents of this publication are solely the responsibility of the authors and do not represent the official views of the National Institutes of Health (NIH). MWCCS (Principal Investigators): Atlanta CRS (Ighovwerha Ofotokun, Anandi Sheth, and Gina Wingood), U01-HL146241; Baltimore CRS (Todd Brown and Joseph Margolick), U01-HL146201; Bronx CRS (Kathryn Anastos and Anjali Sharma), U01-HL146204; Brooklyn CRS (Deborah Gustafson and Tracey Wilson), U01-HL146202; Data Analysis and Coordination Center (Gypsyamber D'Souza, Stephen Gange, and Elizabeth Golub), U01-HL146193; Chicago-Cook County CRS (Mardge Cohen and Audrey French), U01-HL146245; Chicago-Northwestern CRS (Steven Wolinsky), U01-HL146240; Northern California CRS (Bradley Aouizerat, Jennifer Price, and Phyllis Tien), U01-HL146242; Los Angeles CRS (Roger Detels and Matthew Mimiaga), U01-HL146333; Metropolitan Washington CRS (Seble Kassaye and Daniel Merenstein), U01-HL146205; Miami CRS (Maria Alcaide, Margaret Fischl, and Deborah Jones), U01-HL146203; Pittsburgh CRS (Jeremy Martinson and Charles Rinaldo), U01-HL146208; UAB-MS CRS (Mirjam-Colette Kempf, Jodie Dionne-Odom, and Deborah Konkle-Parker), U01-HL146192; UNC CRS (Adaora Adimora), U01-HL146194. The MWCCS is funded primarily by the National Heart, Lung, and Blood Institute (NHLBI), with additional co-funding from the Eunice Kennedy Shriver National Institute Of Child Health & Human Development (NICHD), National Institute On Aging (NIA), National Institute Of Dental & Craniofacial Research (NIDCR), National Institute Of Allergy and Infectious Diseases (NIAID), National Institute Of Neurological Disorders and Stroke (NINDS), National Institute Of Mental Health (NIMH), National Institute On Drug Abuse (NIDA), National Institute Of Nursing Research (NINR), National Cancer Institute (NCI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute on Deafness and Other Communication Disorders (NIDCD), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute on Minority Health and Health Disparities (NIMHD), and in coordination and alignment with the research priorities of the National Institutes of Health, Office of AIDS Research (OAR). MWCCS data collection is also supported by UL1-TR000004 (UCSF CTSA), UL1-TR003098 (JHU ICTR), UL1-TR001881 (UCLA CTSI), P30-AI-050409 (Atlanta CFAR), P30-AI-073961 (Miami CFAR), P30-AI-050410 (UNC CFAR), P30-AI-027767 (UAB CFAR), and P30-MH-116867 (Miami CHARM). Additional NHLBI funding support from R01HL140976 and R01HL132794.
Publisher Copyright:
© 2023 Lippincott Williams and Wilkins. All rights reserved.
PY - 2023/2/1
Y1 - 2023/2/1
N2 - Background:Heart failure is a prevalent disorder whose prognosis remains poor despite advances in treatment. Women with or at risk for HIV may be particularly susceptible, yet the metabolic pathways that promote myocardial disease and heart failure in this context remain incompletely characterized.Methods:To evaluate the metabolomic signatures of cardiac magnetic resonance measured phenotypes, we used available plasma metabolomic measures from participants in the Women's Interagency HIV Study who underwent cardiac magnetic resonance imaging. Our primary outcomes were myocardial extracellular volume fraction (MECV) and intramyocardial triglyceride content (IMTG). We applied partial least squares and identified the top 10 lipid and polar metabolites associated with MECV and IMTG. We used multivariable linear regression to evaluate these metabolites' individual associations with each phenotype.Results:The mean age of participants (n = 153) was 53 ± 7, 93% were Black or Hispanic, and 74% were HIV positive. Phenylacetylglutamine, a microbial metabolite, was positively associated with MECV after full adjustment and false discovery rate correction. Three phosphatidylcholine species, N-acetylaspartic acid, and a lysophosphatidylcholine species were inversely associated with IMTG, while prolylglycine, methionine sulfoxide, sphingosine, taurine, and phosphorylcholine were positively associated with this phenotype. We found no evidence of interaction by HIV for the observed associations, but there was effect modification by hepatitis C virus of taurine's and phosphorylcholine's associations with IMTG.Conclusion:Among women with or at risk for HIV, we related various lipid and polar metabolites to cardiac fibrosis or steatosis, of which phenylacetylglutamine, N-acetylaspartic acid, and prolylglycine are novel. These findings implicate plausible mechanisms that could be targetable for therapeutics.
AB - Background:Heart failure is a prevalent disorder whose prognosis remains poor despite advances in treatment. Women with or at risk for HIV may be particularly susceptible, yet the metabolic pathways that promote myocardial disease and heart failure in this context remain incompletely characterized.Methods:To evaluate the metabolomic signatures of cardiac magnetic resonance measured phenotypes, we used available plasma metabolomic measures from participants in the Women's Interagency HIV Study who underwent cardiac magnetic resonance imaging. Our primary outcomes were myocardial extracellular volume fraction (MECV) and intramyocardial triglyceride content (IMTG). We applied partial least squares and identified the top 10 lipid and polar metabolites associated with MECV and IMTG. We used multivariable linear regression to evaluate these metabolites' individual associations with each phenotype.Results:The mean age of participants (n = 153) was 53 ± 7, 93% were Black or Hispanic, and 74% were HIV positive. Phenylacetylglutamine, a microbial metabolite, was positively associated with MECV after full adjustment and false discovery rate correction. Three phosphatidylcholine species, N-acetylaspartic acid, and a lysophosphatidylcholine species were inversely associated with IMTG, while prolylglycine, methionine sulfoxide, sphingosine, taurine, and phosphorylcholine were positively associated with this phenotype. We found no evidence of interaction by HIV for the observed associations, but there was effect modification by hepatitis C virus of taurine's and phosphorylcholine's associations with IMTG.Conclusion:Among women with or at risk for HIV, we related various lipid and polar metabolites to cardiac fibrosis or steatosis, of which phenylacetylglutamine, N-acetylaspartic acid, and prolylglycine are novel. These findings implicate plausible mechanisms that could be targetable for therapeutics.
KW - HIV
KW - cardiac dysfunction
KW - metabolomics
UR - http://www.scopus.com/inward/record.url?scp=85146139708&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85146139708&partnerID=8YFLogxK
U2 - 10.1097/QAI.0000000000003118
DO - 10.1097/QAI.0000000000003118
M3 - Article
C2 - 36215981
AN - SCOPUS:85146139708
SN - 1525-4135
VL - 92
SP - 162
EP - 172
JO - Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology
JF - Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology
IS - 2
ER -