Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6′)-Ib and its bifunctional, fluoroquinolone-active AAC(6′)-Ib-cr variant

Matthew W. Vetting, Hye Park Chi, Subray Hegde, George A. Jacoby, David C. Hooper, John S. Blanchard

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

Enzymatic modification of aminoglycoside antibiotics mediated by regioselective aminoglycoside N-acetyltransferases is the predominant cause of bacterial resistance to aminoglycosides. A recently discovered bifunctional aminoglycoside acetyltransferase (AAC(6′)-Ib variant, AAC(6′)-Ib-cr) has been shown to catalyze the acetylation of fluoroquinolones as well as aminoglycosides. We have expressed and purified AAC(6′)-Ib-wt and its bifunctional variant AAC(6′)-Ib-cr in Escherichia coli and characterized their kinetic and chemical mechanism. Initial velocity and dead-end inhibition studies support an ordered sequential mechanism for the enzyme(s). The three-dimensional structure of AAC(6′)-Ib-wt was determined in various complexes with donor and acceptor ligands to resolutions greater than 2.2 Å. Observation of the direct, and optimally positioned, interaction between the 6′-NH2 and Asp115 suggests that Asp115 acts as a general base to accept a proton in the reaction. The structure of AAC(6′)-Ib-wt permits the construction of a molecular model of the interactions of fluoroquinolones with the AAC(6′)-Ib-cr variant. The model suggests that a major contribution to the fluoroquinolone acetylation activity comes from the Asp179Tyr mutation, where Tyr179 makes π-stacking interactions with the quinolone ring facilitating quinolone binding. The model also suggests that fluoroquinolones and aminoglycosides have different binding modes. On the basis of kinetic properties, the pH dependence of the kinetic parameters, and structural information, we propose an acid/base-assisted reaction catalyzed by AAC(6′)-Ib-wt and the AAC(6′)-Ib-cr variant involving a ternary complex.

Original languageEnglish (US)
Pages (from-to)9825-9835
Number of pages11
JournalBiochemistry
Volume47
Issue number37
DOIs
StatePublished - Sep 16 2008

Fingerprint

Acetyltransferases
Fluoroquinolones
Aminoglycosides
Structural analysis
Quinolones
Acetylation
Molecular Models
Kinetics
Protons
Kinetic parameters
Escherichia coli
Observation
Anti-Bacterial Agents
Ligands
Mutation
Acids
aminoglycoside N(6')-acetyltransferase
Enzymes
aminoglycoside acetyltransferase

ASJC Scopus subject areas

  • Biochemistry

Cite this

Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6′)-Ib and its bifunctional, fluoroquinolone-active AAC(6′)-Ib-cr variant. / Vetting, Matthew W.; Chi, Hye Park; Hegde, Subray; Jacoby, George A.; Hooper, David C.; Blanchard, John S.

In: Biochemistry, Vol. 47, No. 37, 16.09.2008, p. 9825-9835.

Research output: Contribution to journalArticle

@article{df632cf7ac4d44dbac600dfa96147264,
title = "Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6′)-Ib and its bifunctional, fluoroquinolone-active AAC(6′)-Ib-cr variant",
abstract = "Enzymatic modification of aminoglycoside antibiotics mediated by regioselective aminoglycoside N-acetyltransferases is the predominant cause of bacterial resistance to aminoglycosides. A recently discovered bifunctional aminoglycoside acetyltransferase (AAC(6′)-Ib variant, AAC(6′)-Ib-cr) has been shown to catalyze the acetylation of fluoroquinolones as well as aminoglycosides. We have expressed and purified AAC(6′)-Ib-wt and its bifunctional variant AAC(6′)-Ib-cr in Escherichia coli and characterized their kinetic and chemical mechanism. Initial velocity and dead-end inhibition studies support an ordered sequential mechanism for the enzyme(s). The three-dimensional structure of AAC(6′)-Ib-wt was determined in various complexes with donor and acceptor ligands to resolutions greater than 2.2 {\AA}. Observation of the direct, and optimally positioned, interaction between the 6′-NH2 and Asp115 suggests that Asp115 acts as a general base to accept a proton in the reaction. The structure of AAC(6′)-Ib-wt permits the construction of a molecular model of the interactions of fluoroquinolones with the AAC(6′)-Ib-cr variant. The model suggests that a major contribution to the fluoroquinolone acetylation activity comes from the Asp179Tyr mutation, where Tyr179 makes π-stacking interactions with the quinolone ring facilitating quinolone binding. The model also suggests that fluoroquinolones and aminoglycosides have different binding modes. On the basis of kinetic properties, the pH dependence of the kinetic parameters, and structural information, we propose an acid/base-assisted reaction catalyzed by AAC(6′)-Ib-wt and the AAC(6′)-Ib-cr variant involving a ternary complex.",
author = "Vetting, {Matthew W.} and Chi, {Hye Park} and Subray Hegde and Jacoby, {George A.} and Hooper, {David C.} and Blanchard, {John S.}",
year = "2008",
month = "9",
day = "16",
doi = "10.1021/bi800664x",
language = "English (US)",
volume = "47",
pages = "9825--9835",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "37",

}

TY - JOUR

T1 - Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6′)-Ib and its bifunctional, fluoroquinolone-active AAC(6′)-Ib-cr variant

AU - Vetting, Matthew W.

AU - Chi, Hye Park

AU - Hegde, Subray

AU - Jacoby, George A.

AU - Hooper, David C.

AU - Blanchard, John S.

PY - 2008/9/16

Y1 - 2008/9/16

N2 - Enzymatic modification of aminoglycoside antibiotics mediated by regioselective aminoglycoside N-acetyltransferases is the predominant cause of bacterial resistance to aminoglycosides. A recently discovered bifunctional aminoglycoside acetyltransferase (AAC(6′)-Ib variant, AAC(6′)-Ib-cr) has been shown to catalyze the acetylation of fluoroquinolones as well as aminoglycosides. We have expressed and purified AAC(6′)-Ib-wt and its bifunctional variant AAC(6′)-Ib-cr in Escherichia coli and characterized their kinetic and chemical mechanism. Initial velocity and dead-end inhibition studies support an ordered sequential mechanism for the enzyme(s). The three-dimensional structure of AAC(6′)-Ib-wt was determined in various complexes with donor and acceptor ligands to resolutions greater than 2.2 Å. Observation of the direct, and optimally positioned, interaction between the 6′-NH2 and Asp115 suggests that Asp115 acts as a general base to accept a proton in the reaction. The structure of AAC(6′)-Ib-wt permits the construction of a molecular model of the interactions of fluoroquinolones with the AAC(6′)-Ib-cr variant. The model suggests that a major contribution to the fluoroquinolone acetylation activity comes from the Asp179Tyr mutation, where Tyr179 makes π-stacking interactions with the quinolone ring facilitating quinolone binding. The model also suggests that fluoroquinolones and aminoglycosides have different binding modes. On the basis of kinetic properties, the pH dependence of the kinetic parameters, and structural information, we propose an acid/base-assisted reaction catalyzed by AAC(6′)-Ib-wt and the AAC(6′)-Ib-cr variant involving a ternary complex.

AB - Enzymatic modification of aminoglycoside antibiotics mediated by regioselective aminoglycoside N-acetyltransferases is the predominant cause of bacterial resistance to aminoglycosides. A recently discovered bifunctional aminoglycoside acetyltransferase (AAC(6′)-Ib variant, AAC(6′)-Ib-cr) has been shown to catalyze the acetylation of fluoroquinolones as well as aminoglycosides. We have expressed and purified AAC(6′)-Ib-wt and its bifunctional variant AAC(6′)-Ib-cr in Escherichia coli and characterized their kinetic and chemical mechanism. Initial velocity and dead-end inhibition studies support an ordered sequential mechanism for the enzyme(s). The three-dimensional structure of AAC(6′)-Ib-wt was determined in various complexes with donor and acceptor ligands to resolutions greater than 2.2 Å. Observation of the direct, and optimally positioned, interaction between the 6′-NH2 and Asp115 suggests that Asp115 acts as a general base to accept a proton in the reaction. The structure of AAC(6′)-Ib-wt permits the construction of a molecular model of the interactions of fluoroquinolones with the AAC(6′)-Ib-cr variant. The model suggests that a major contribution to the fluoroquinolone acetylation activity comes from the Asp179Tyr mutation, where Tyr179 makes π-stacking interactions with the quinolone ring facilitating quinolone binding. The model also suggests that fluoroquinolones and aminoglycosides have different binding modes. On the basis of kinetic properties, the pH dependence of the kinetic parameters, and structural information, we propose an acid/base-assisted reaction catalyzed by AAC(6′)-Ib-wt and the AAC(6′)-Ib-cr variant involving a ternary complex.

UR - http://www.scopus.com/inward/record.url?scp=51849143320&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=51849143320&partnerID=8YFLogxK

U2 - 10.1021/bi800664x

DO - 10.1021/bi800664x

M3 - Article

C2 - 18710261

AN - SCOPUS:51849143320

VL - 47

SP - 9825

EP - 9835

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 37

ER -