Mechanisms of chemosensory transduction in taste cells.

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

The application of new techniques to the study of taste cells has revealed much about both the basic physiology of these cells and also about the mechanisms of taste transduction. The taste cells are electrically excitable cells with a variety of voltage-dependent ion currents. These ionic currents have an important role in the transduction of salt taste in mammals and frogs. In mudpuppies different ion channels are involved in the transduction of acidic-sour stimuli. The role of ion currents in the transduction of sweet taste is less clear. Some proposed mechanisms suggest an important role for ion currents and others suggest that the transduction process may be a biochemical event involving cell surface receptors and intracellular second messengers, possibly cAMP. The transduction of bitter taste seems to be a biochemical event involving cell surface receptors and intracellular second messengers in the inositol trisphosphate pathway. Thus, one cannot talk about "the mechanism" of taste transduction. Different taste modalities are transduced by different mechanisms. A corollary to this is that taste cells are not a homogeneous population of cells. In order to provide animals with the ability to discriminate between different taste modalities the taste cells consist of distinct subpopulations of cells based on their primary taste modality. The primary taste modality in a given cell is determined by the receptors and transduction mechanism(s) expressed in that cell. Evidence suggests that modality-specific receptors are expressed in a segregated manner in distinct subpopulations of taste cells. Secondary responses observed in gustatory axons may arise due to a lack of absolute specificity in the transduction processes and nonspecific effects of low pH and high ionic strength and osmolarity on the taste cells. An interesting area for future work will be to elucidate the mechanism(s) by which basal cells become committed to a given taste modality and how the gustatory neurons influence this process of differentiation. The involvement of the gustatory neurons is critical as they must synapse with taste cells of the correct taste modality to preserve the integrity of the information transferred to the CNS. This process of synaptogenesis is presumably mediated by the expression of taste-modality-specific, cell surface antigens on the basolateral domain of a taste cell and receptors on the appropriate neurons, but much work will be necessary to elucidate this process.(ABSTRACT TRUNCATED AT 400 WORDS)

Original languageEnglish (US)
Pages (from-to)241-279
Number of pages39
JournalInternational Review of Neurobiology
Volume32
StatePublished - 1990
Externally publishedYes

Fingerprint

Cell Surface Receptors
Second Messenger Systems
Ions
Neurons
Osmolar Concentration
Necturus
Cell Physiological Phenomena
Aptitude
Inositol
Surface Antigens
Ion Channels
Anura
Synapses
Axons
Mammals
Salts
Population

ASJC Scopus subject areas

  • Medicine(all)
  • Clinical Neurology
  • Cellular and Molecular Neuroscience

Cite this

Mechanisms of chemosensory transduction in taste cells. / Akabas, Myles.

In: International Review of Neurobiology, Vol. 32, 1990, p. 241-279.

Research output: Contribution to journalArticle

@article{5e620198544d477fb086883d653cc78d,
title = "Mechanisms of chemosensory transduction in taste cells.",
abstract = "The application of new techniques to the study of taste cells has revealed much about both the basic physiology of these cells and also about the mechanisms of taste transduction. The taste cells are electrically excitable cells with a variety of voltage-dependent ion currents. These ionic currents have an important role in the transduction of salt taste in mammals and frogs. In mudpuppies different ion channels are involved in the transduction of acidic-sour stimuli. The role of ion currents in the transduction of sweet taste is less clear. Some proposed mechanisms suggest an important role for ion currents and others suggest that the transduction process may be a biochemical event involving cell surface receptors and intracellular second messengers, possibly cAMP. The transduction of bitter taste seems to be a biochemical event involving cell surface receptors and intracellular second messengers in the inositol trisphosphate pathway. Thus, one cannot talk about {"}the mechanism{"} of taste transduction. Different taste modalities are transduced by different mechanisms. A corollary to this is that taste cells are not a homogeneous population of cells. In order to provide animals with the ability to discriminate between different taste modalities the taste cells consist of distinct subpopulations of cells based on their primary taste modality. The primary taste modality in a given cell is determined by the receptors and transduction mechanism(s) expressed in that cell. Evidence suggests that modality-specific receptors are expressed in a segregated manner in distinct subpopulations of taste cells. Secondary responses observed in gustatory axons may arise due to a lack of absolute specificity in the transduction processes and nonspecific effects of low pH and high ionic strength and osmolarity on the taste cells. An interesting area for future work will be to elucidate the mechanism(s) by which basal cells become committed to a given taste modality and how the gustatory neurons influence this process of differentiation. The involvement of the gustatory neurons is critical as they must synapse with taste cells of the correct taste modality to preserve the integrity of the information transferred to the CNS. This process of synaptogenesis is presumably mediated by the expression of taste-modality-specific, cell surface antigens on the basolateral domain of a taste cell and receptors on the appropriate neurons, but much work will be necessary to elucidate this process.(ABSTRACT TRUNCATED AT 400 WORDS)",
author = "Myles Akabas",
year = "1990",
language = "English (US)",
volume = "32",
pages = "241--279",
journal = "International Review of Neurobiology",
issn = "0074-7742",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Mechanisms of chemosensory transduction in taste cells.

AU - Akabas, Myles

PY - 1990

Y1 - 1990

N2 - The application of new techniques to the study of taste cells has revealed much about both the basic physiology of these cells and also about the mechanisms of taste transduction. The taste cells are electrically excitable cells with a variety of voltage-dependent ion currents. These ionic currents have an important role in the transduction of salt taste in mammals and frogs. In mudpuppies different ion channels are involved in the transduction of acidic-sour stimuli. The role of ion currents in the transduction of sweet taste is less clear. Some proposed mechanisms suggest an important role for ion currents and others suggest that the transduction process may be a biochemical event involving cell surface receptors and intracellular second messengers, possibly cAMP. The transduction of bitter taste seems to be a biochemical event involving cell surface receptors and intracellular second messengers in the inositol trisphosphate pathway. Thus, one cannot talk about "the mechanism" of taste transduction. Different taste modalities are transduced by different mechanisms. A corollary to this is that taste cells are not a homogeneous population of cells. In order to provide animals with the ability to discriminate between different taste modalities the taste cells consist of distinct subpopulations of cells based on their primary taste modality. The primary taste modality in a given cell is determined by the receptors and transduction mechanism(s) expressed in that cell. Evidence suggests that modality-specific receptors are expressed in a segregated manner in distinct subpopulations of taste cells. Secondary responses observed in gustatory axons may arise due to a lack of absolute specificity in the transduction processes and nonspecific effects of low pH and high ionic strength and osmolarity on the taste cells. An interesting area for future work will be to elucidate the mechanism(s) by which basal cells become committed to a given taste modality and how the gustatory neurons influence this process of differentiation. The involvement of the gustatory neurons is critical as they must synapse with taste cells of the correct taste modality to preserve the integrity of the information transferred to the CNS. This process of synaptogenesis is presumably mediated by the expression of taste-modality-specific, cell surface antigens on the basolateral domain of a taste cell and receptors on the appropriate neurons, but much work will be necessary to elucidate this process.(ABSTRACT TRUNCATED AT 400 WORDS)

AB - The application of new techniques to the study of taste cells has revealed much about both the basic physiology of these cells and also about the mechanisms of taste transduction. The taste cells are electrically excitable cells with a variety of voltage-dependent ion currents. These ionic currents have an important role in the transduction of salt taste in mammals and frogs. In mudpuppies different ion channels are involved in the transduction of acidic-sour stimuli. The role of ion currents in the transduction of sweet taste is less clear. Some proposed mechanisms suggest an important role for ion currents and others suggest that the transduction process may be a biochemical event involving cell surface receptors and intracellular second messengers, possibly cAMP. The transduction of bitter taste seems to be a biochemical event involving cell surface receptors and intracellular second messengers in the inositol trisphosphate pathway. Thus, one cannot talk about "the mechanism" of taste transduction. Different taste modalities are transduced by different mechanisms. A corollary to this is that taste cells are not a homogeneous population of cells. In order to provide animals with the ability to discriminate between different taste modalities the taste cells consist of distinct subpopulations of cells based on their primary taste modality. The primary taste modality in a given cell is determined by the receptors and transduction mechanism(s) expressed in that cell. Evidence suggests that modality-specific receptors are expressed in a segregated manner in distinct subpopulations of taste cells. Secondary responses observed in gustatory axons may arise due to a lack of absolute specificity in the transduction processes and nonspecific effects of low pH and high ionic strength and osmolarity on the taste cells. An interesting area for future work will be to elucidate the mechanism(s) by which basal cells become committed to a given taste modality and how the gustatory neurons influence this process of differentiation. The involvement of the gustatory neurons is critical as they must synapse with taste cells of the correct taste modality to preserve the integrity of the information transferred to the CNS. This process of synaptogenesis is presumably mediated by the expression of taste-modality-specific, cell surface antigens on the basolateral domain of a taste cell and receptors on the appropriate neurons, but much work will be necessary to elucidate this process.(ABSTRACT TRUNCATED AT 400 WORDS)

UR - http://www.scopus.com/inward/record.url?scp=0025653347&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025653347&partnerID=8YFLogxK

M3 - Article

VL - 32

SP - 241

EP - 279

JO - International Review of Neurobiology

JF - International Review of Neurobiology

SN - 0074-7742

ER -