Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4: Is Ca2+ regulation defective?

Subrata Biswas, Deborah A. DiSilvestre, Peihong Dong, Gordon F. Tomaselli

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Mutations in the cytoplasmic tail (CT) of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I) has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNa V1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca2+ and calmodulin (CaM) regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca 2+ and CaM. hNaV1.4F1705I inactivation gating is Ca2+-sensitive compared to wild type hNaV1.4 which is Ca2+ insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4 F1698I) eliminates Ca2+ sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca2+ sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL) region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca2+/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca2+-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca2+-sensing apparatus in the CT of NaV1.4.

Original languageEnglish (US)
Article numbere81063
JournalPLoS One
Volume8
Issue number12
DOIs
StatePublished - Dec 6 2013
Externally publishedYes

Fingerprint

Myotonia
Calmodulin
Tail
calmodulin
mutation
calcium
Mutation
Voltage-Gated Sodium Channels
EF Hand Motifs
tail
inactivation
sodium channels
mutants
hands
deterioration
Muscle
Rats
Amino Acid Sequence
Skeletal Muscle
rats

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4 : Is Ca2+ regulation defective? / Biswas, Subrata; DiSilvestre, Deborah A.; Dong, Peihong; Tomaselli, Gordon F.

In: PLoS One, Vol. 8, No. 12, e81063, 06.12.2013.

Research output: Contribution to journalArticle

@article{ad9d4f9fd9e146c19238aeed12c9cb8e,
title = "Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4: Is Ca2+ regulation defective?",
abstract = "Mutations in the cytoplasmic tail (CT) of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I) has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNa V1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca2+ and calmodulin (CaM) regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca 2+ and CaM. hNaV1.4F1705I inactivation gating is Ca2+-sensitive compared to wild type hNaV1.4 which is Ca2+ insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4 F1698I) eliminates Ca2+ sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca2+ sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL) region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca2+/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca2+-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca2+-sensing apparatus in the CT of NaV1.4.",
author = "Subrata Biswas and DiSilvestre, {Deborah A.} and Peihong Dong and Tomaselli, {Gordon F.}",
year = "2013",
month = "12",
day = "6",
doi = "10.1371/journal.pone.0081063",
language = "English (US)",
volume = "8",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "12",

}

TY - JOUR

T1 - Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4

T2 - Is Ca2+ regulation defective?

AU - Biswas, Subrata

AU - DiSilvestre, Deborah A.

AU - Dong, Peihong

AU - Tomaselli, Gordon F.

PY - 2013/12/6

Y1 - 2013/12/6

N2 - Mutations in the cytoplasmic tail (CT) of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I) has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNa V1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca2+ and calmodulin (CaM) regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca 2+ and CaM. hNaV1.4F1705I inactivation gating is Ca2+-sensitive compared to wild type hNaV1.4 which is Ca2+ insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4 F1698I) eliminates Ca2+ sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca2+ sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL) region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca2+/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca2+-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca2+-sensing apparatus in the CT of NaV1.4.

AB - Mutations in the cytoplasmic tail (CT) of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I) has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNa V1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca2+ and calmodulin (CaM) regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca 2+ and CaM. hNaV1.4F1705I inactivation gating is Ca2+-sensitive compared to wild type hNaV1.4 which is Ca2+ insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4 F1698I) eliminates Ca2+ sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca2+ sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL) region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca2+/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca2+-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca2+-sensing apparatus in the CT of NaV1.4.

UR - http://www.scopus.com/inward/record.url?scp=84891919244&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84891919244&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0081063

DO - 10.1371/journal.pone.0081063

M3 - Article

C2 - 24324661

AN - SCOPUS:84891919244

VL - 8

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 12

M1 - e81063

ER -