TY - JOUR
T1 - Macromolecular transport in heart valves. III. Experiment and theory for the size distribution of extracellular liposomes in hyperlipidemic rabbits
AU - Zeng, Zhongqing
AU - Nievelstein-Post, Patricia
AU - Yin, Yongyi
AU - Jan, Kung Ming
AU - Frank, Joy S.
AU - Rumschitzki, David S.
PY - 2007/6
Y1 - 2007/6
N2 - The heart valve leaflets of 29-day cholesterol-fed rabbits were examined by ultrarapid freezing without conventional chemical fixation/processing, followed by rotary shadow freeze-etching. This procedure images the leaflets' subendothelial extracellular matrix in extraordinary detail, and extracellular lipid liposomes, from 23 to 220 nm in diameter, clearly appear there. These liposomes are linked to matrix filaments and appear in clusters. Their size distribution shows 60.7% with diameters 23-69 nm, 31.7% between 70 and 119 nm, 7.3% between 120 and 169 nm, and 0.3% between 170 and 220 nm (superlarge) and suggests that smaller liposomes can fuse into larger ones. We couple our model from Part II of this series (Zeng Z, Yin Y, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 292: H2671-H2686, 2007) for lipid transport into the leaflet to the nucleation-polymerization model hierarchy for liposome formation proposed originally for aortic liposomes to predict liposome formation/growth in heart valves. Simulations show that the simplest such model cannot account for the observed size distribution. However, modifying this model by including liposome fusing/merging, using parameters determined from aortic liposomes, leads to predicted size distributions in excellent agreement with our valve data. Evolutions of both the liposome size distribution and total liposome mass suggest that fusing becomes significant only after 2 wk of high lumen cholesterol. Inclusion of phagocytosis by macrophages limits the otherwise monotonically increasing total liposome mass, while keeping the excellent fit of the liposome size distribution to the data.
AB - The heart valve leaflets of 29-day cholesterol-fed rabbits were examined by ultrarapid freezing without conventional chemical fixation/processing, followed by rotary shadow freeze-etching. This procedure images the leaflets' subendothelial extracellular matrix in extraordinary detail, and extracellular lipid liposomes, from 23 to 220 nm in diameter, clearly appear there. These liposomes are linked to matrix filaments and appear in clusters. Their size distribution shows 60.7% with diameters 23-69 nm, 31.7% between 70 and 119 nm, 7.3% between 120 and 169 nm, and 0.3% between 170 and 220 nm (superlarge) and suggests that smaller liposomes can fuse into larger ones. We couple our model from Part II of this series (Zeng Z, Yin Y, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 292: H2671-H2686, 2007) for lipid transport into the leaflet to the nucleation-polymerization model hierarchy for liposome formation proposed originally for aortic liposomes to predict liposome formation/growth in heart valves. Simulations show that the simplest such model cannot account for the observed size distribution. However, modifying this model by including liposome fusing/merging, using parameters determined from aortic liposomes, leads to predicted size distributions in excellent agreement with our valve data. Evolutions of both the liposome size distribution and total liposome mass suggest that fusing becomes significant only after 2 wk of high lumen cholesterol. Inclusion of phagocytosis by macrophages limits the otherwise monotonically increasing total liposome mass, while keeping the excellent fit of the liposome size distribution to the data.
KW - Aortic stenosis
KW - Kinetics of lipid accumulation in values
KW - Size distribution
UR - http://www.scopus.com/inward/record.url?scp=34447498758&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34447498758&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00606.2006
DO - 10.1152/ajpheart.00606.2006
M3 - Article
C2 - 17237250
AN - SCOPUS:34447498758
SN - 0363-6135
VL - 292
SP - H2687-H2697
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 6
ER -