Loss of reduced folate carrier function and folate depletion result in enhanced pemetrexed inhibition of purine synthesis

Rongbao Zhao, Shubing Zhang, Marie Hanscom, Shrikanta Chattopadhyay, I. David Goldman

Research output: Contribution to journalArticle

23 Scopus citations

Abstract

Pemetrexed is a novel antifolate with polyglutamate derivatives that are potent inhibitors of thymidylate synthase (TS) and to a lesser extent glycinamide ribonucleotide formyltransferase (GARFT). Conditions that might modulate relative suppression of these sites were assessed by the pattern of hypoxanthine and thymidine protection. When grown with 25 nmol/L racemic 5-formyltetrahydrofolate, thymidine alone fully protected wild-type HeLa cells to at least 1 μmol/L pemetrexed, but protection of a reduced folate carrier (RFC)-null subline required both thymidine and hypoxanthine above a concentration of 30 nmol/L pemetrexed. As medium 5-formyltetrahydrofolate was decreased, protection by thymidine alone decreased, and was further diminished when HeLa cells were grown in dialyzed serum. There was little protection by thymidine of RFC-null HeLa cells under the latter conditions. Thymidine alone was not protective, and hypoxanthine alone produced only a small (2-fold) increase in IC50, in a HeLa-derived line 8-fold resistant to pemetrexed due to a modest increase in TS. Finally, in MCF-7 breast cancer cells there was greater protection with thymidine alone than in HeLa cells when cells were grown in medium containing a low concentration of 5- formyltetrahydrofolate. These observations indicate that as intracellular folates decrease in HeLa cells, due to decreased extracellular reduced folate, or loss of RFC function, pemetrexed inhibition of GARFT increases. These data support the concept that the contribution to pemetrexed activity by inhibition of GARFT, particularly at low folate levels, is a contributing factor to drug activity but relative inhibition of TS and GARFT may vary among human tumors and cell lines.

Original languageEnglish (US)
Pages (from-to)1294-1301
Number of pages8
JournalClinical Cancer Research
Volume11
Issue number3
StatePublished - Feb 1 2005

    Fingerprint

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this