TY - JOUR
T1 - Loss of intestinal nuclei and intestinal integrity in aging C. elegans
AU - McGee, Matthew D.
AU - Weber, Darren
AU - Day, Nicholas
AU - Vitelli, Cathy
AU - Crippen, Danielle
AU - Herndon, Laura A.
AU - Hall, David H.
AU - Melov, Simon
PY - 2011/8
Y1 - 2011/8
N2 - The roundworm C. elegans is widely used as an aging model, with hundreds of genes identified that modulate aging (Kaeberlein et al., 2002. Mech. Ageing Dev.123, 1115-1119). The development and bodyplan of the 959 cells comprising the adult have been well described and established for more than 25years (Sulston & Horvitz, 1977. Dev. Biol.56, 110-156; Sulston et al., 1983. Dev. Biol.100, 64-119.). However, morphological changes with age in this optically transparent animal are less well understood, with only a handful of studies investigating the pathobiology of aging. Age-related changes in muscle (Herndon, 2002. Nature419, 808-814), neurons (Herndon, 2002), intestine and yolk granules (Garigan, 2002. Genetics161, 1101-1112; Herndon, 2002), nuclear architecture (Haithcock, 2005. Proc. Natl Acad. Sci. USA102, 16690-16695), tail nuclei (Golden, 2007. Aging Cell6, 179-188), and the germline (Golden, 2007) have been observed via a variety of traditional relatively low-throughput methods. We report here a number of novel approaches to study the pathobiology of aging C. elegans. We combined histological staining of serial-sectioned tissues, transmission electron microscopy, and confocal microscopy with 3D volumetric reconstructions and characterized age-related morphological changes in multiple wild-type individuals at different ages. This enabled us to identify several novel pathologies with age in the C. elegans intestine, including the loss of critical nuclei, the degradation of intestinal microvilli, changes in the size, shape, and cytoplasmic contents of the intestine, and altered morphologies caused by ingested bacteria. The three-dimensional models we have created of tissues and cellular components from multiple individuals of different ages represent a unique resource to demonstrate global heterogeneity of a multicellular organism.
AB - The roundworm C. elegans is widely used as an aging model, with hundreds of genes identified that modulate aging (Kaeberlein et al., 2002. Mech. Ageing Dev.123, 1115-1119). The development and bodyplan of the 959 cells comprising the adult have been well described and established for more than 25years (Sulston & Horvitz, 1977. Dev. Biol.56, 110-156; Sulston et al., 1983. Dev. Biol.100, 64-119.). However, morphological changes with age in this optically transparent animal are less well understood, with only a handful of studies investigating the pathobiology of aging. Age-related changes in muscle (Herndon, 2002. Nature419, 808-814), neurons (Herndon, 2002), intestine and yolk granules (Garigan, 2002. Genetics161, 1101-1112; Herndon, 2002), nuclear architecture (Haithcock, 2005. Proc. Natl Acad. Sci. USA102, 16690-16695), tail nuclei (Golden, 2007. Aging Cell6, 179-188), and the germline (Golden, 2007) have been observed via a variety of traditional relatively low-throughput methods. We report here a number of novel approaches to study the pathobiology of aging C. elegans. We combined histological staining of serial-sectioned tissues, transmission electron microscopy, and confocal microscopy with 3D volumetric reconstructions and characterized age-related morphological changes in multiple wild-type individuals at different ages. This enabled us to identify several novel pathologies with age in the C. elegans intestine, including the loss of critical nuclei, the degradation of intestinal microvilli, changes in the size, shape, and cytoplasmic contents of the intestine, and altered morphologies caused by ingested bacteria. The three-dimensional models we have created of tissues and cellular components from multiple individuals of different ages represent a unique resource to demonstrate global heterogeneity of a multicellular organism.
KW - Aging
KW - C. elegans
KW - Intestine
KW - Microvilli
KW - Nucleus
UR - http://www.scopus.com/inward/record.url?scp=80955178805&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80955178805&partnerID=8YFLogxK
U2 - 10.1111/j.1474-9726.2011.00713.x
DO - 10.1111/j.1474-9726.2011.00713.x
M3 - Article
C2 - 21501374
AN - SCOPUS:80955178805
SN - 1474-9718
VL - 10
SP - 699
EP - 710
JO - Aging Cell
JF - Aging Cell
IS - 4
ER -