Ligand-induced changes in the location of actin, myosin, 95K (α-actinin), and 120K protein in amebae of Dictyostelium discoideum

J. M. Carboni, John S. Condeelis

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

In this study we investigated concanavalin A (Con A) induced changes in the locations of actin, myosin, 120K, and 95K (α-actinin) to determine the extent to which actin and myosin are reorganized during capping and the roles that 120K and 95K might play in this reorganization. We observed the location of each protein by indirect immunofluorescence using affinity purified antibodies. Four morphological states were distinguished in vegetative Dictyostelium amebae: ameboid cells before Con A binding, patched cells, capped cells, and ameboid cells with caps. The location of each protein was distinct in ameboid cells both before and after capping. Actin and 120K were found in the cell cortex usually associated with surface projections, and myosin and 95K were diffusely distributed. Myosin was excluded from surface projections in ameboid cells. During patching, all four proteins were localized below Con A patches. During capping, actin, myosin, and 95K protein moved with the Con A patches into the cap whereas 120K protein was excluded from the cap. During the late stages of cap formation actin and myosin were progressively lost from the cap, and 120K became concentrated in new actin-filled projections that formed away from the cap. However, 95K remained tightly associated with the cap. Poisoning cells with sodium azide inhibited capping but not patching of ligand. In azide-poisoned cells, myosin and 95K did not co-patch with Con A, whereas copatching of 120K and actin with Con A occurred as usual. Our results support the hypothesis that capping is an actomyosin-mediated motile event that involves a sliding interaction between actin filaments, which are anchored through the membrane to ligand patches, and myosin in the cortex. They are also consistent with a role for 120K in the formation of surface projections by promoting growth and/or cross-linking of actin filaments within projections, and with a role for 95K in regulating actomyosin-mediated contractility, earlier proposals based on the in vitro properties of these two proteins.

Original languageEnglish (US)
Pages (from-to)1884-1893
Number of pages10
JournalJournal of Cell Biology
Volume100
Issue number6
StatePublished - 1985

Fingerprint

Actinin
Amoeba
Dictyostelium
Myosins
Actins
Concanavalin A
Ligands
Proteins
Actomyosin
Actin Cytoskeleton
Sodium Azide
Antibody Affinity
Azides
Indirect Fluorescent Antibody Technique
Poisoning

ASJC Scopus subject areas

  • Cell Biology

Cite this

@article{78ca5d25b14445e3950f2b709ddfe0dd,
title = "Ligand-induced changes in the location of actin, myosin, 95K (α-actinin), and 120K protein in amebae of Dictyostelium discoideum",
abstract = "In this study we investigated concanavalin A (Con A) induced changes in the locations of actin, myosin, 120K, and 95K (α-actinin) to determine the extent to which actin and myosin are reorganized during capping and the roles that 120K and 95K might play in this reorganization. We observed the location of each protein by indirect immunofluorescence using affinity purified antibodies. Four morphological states were distinguished in vegetative Dictyostelium amebae: ameboid cells before Con A binding, patched cells, capped cells, and ameboid cells with caps. The location of each protein was distinct in ameboid cells both before and after capping. Actin and 120K were found in the cell cortex usually associated with surface projections, and myosin and 95K were diffusely distributed. Myosin was excluded from surface projections in ameboid cells. During patching, all four proteins were localized below Con A patches. During capping, actin, myosin, and 95K protein moved with the Con A patches into the cap whereas 120K protein was excluded from the cap. During the late stages of cap formation actin and myosin were progressively lost from the cap, and 120K became concentrated in new actin-filled projections that formed away from the cap. However, 95K remained tightly associated with the cap. Poisoning cells with sodium azide inhibited capping but not patching of ligand. In azide-poisoned cells, myosin and 95K did not co-patch with Con A, whereas copatching of 120K and actin with Con A occurred as usual. Our results support the hypothesis that capping is an actomyosin-mediated motile event that involves a sliding interaction between actin filaments, which are anchored through the membrane to ligand patches, and myosin in the cortex. They are also consistent with a role for 120K in the formation of surface projections by promoting growth and/or cross-linking of actin filaments within projections, and with a role for 95K in regulating actomyosin-mediated contractility, earlier proposals based on the in vitro properties of these two proteins.",
author = "Carboni, {J. M.} and Condeelis, {John S.}",
year = "1985",
language = "English (US)",
volume = "100",
pages = "1884--1893",
journal = "Journal of Cell Biology",
issn = "0021-9525",
publisher = "Rockefeller University Press",
number = "6",

}

TY - JOUR

T1 - Ligand-induced changes in the location of actin, myosin, 95K (α-actinin), and 120K protein in amebae of Dictyostelium discoideum

AU - Carboni, J. M.

AU - Condeelis, John S.

PY - 1985

Y1 - 1985

N2 - In this study we investigated concanavalin A (Con A) induced changes in the locations of actin, myosin, 120K, and 95K (α-actinin) to determine the extent to which actin and myosin are reorganized during capping and the roles that 120K and 95K might play in this reorganization. We observed the location of each protein by indirect immunofluorescence using affinity purified antibodies. Four morphological states were distinguished in vegetative Dictyostelium amebae: ameboid cells before Con A binding, patched cells, capped cells, and ameboid cells with caps. The location of each protein was distinct in ameboid cells both before and after capping. Actin and 120K were found in the cell cortex usually associated with surface projections, and myosin and 95K were diffusely distributed. Myosin was excluded from surface projections in ameboid cells. During patching, all four proteins were localized below Con A patches. During capping, actin, myosin, and 95K protein moved with the Con A patches into the cap whereas 120K protein was excluded from the cap. During the late stages of cap formation actin and myosin were progressively lost from the cap, and 120K became concentrated in new actin-filled projections that formed away from the cap. However, 95K remained tightly associated with the cap. Poisoning cells with sodium azide inhibited capping but not patching of ligand. In azide-poisoned cells, myosin and 95K did not co-patch with Con A, whereas copatching of 120K and actin with Con A occurred as usual. Our results support the hypothesis that capping is an actomyosin-mediated motile event that involves a sliding interaction between actin filaments, which are anchored through the membrane to ligand patches, and myosin in the cortex. They are also consistent with a role for 120K in the formation of surface projections by promoting growth and/or cross-linking of actin filaments within projections, and with a role for 95K in regulating actomyosin-mediated contractility, earlier proposals based on the in vitro properties of these two proteins.

AB - In this study we investigated concanavalin A (Con A) induced changes in the locations of actin, myosin, 120K, and 95K (α-actinin) to determine the extent to which actin and myosin are reorganized during capping and the roles that 120K and 95K might play in this reorganization. We observed the location of each protein by indirect immunofluorescence using affinity purified antibodies. Four morphological states were distinguished in vegetative Dictyostelium amebae: ameboid cells before Con A binding, patched cells, capped cells, and ameboid cells with caps. The location of each protein was distinct in ameboid cells both before and after capping. Actin and 120K were found in the cell cortex usually associated with surface projections, and myosin and 95K were diffusely distributed. Myosin was excluded from surface projections in ameboid cells. During patching, all four proteins were localized below Con A patches. During capping, actin, myosin, and 95K protein moved with the Con A patches into the cap whereas 120K protein was excluded from the cap. During the late stages of cap formation actin and myosin were progressively lost from the cap, and 120K became concentrated in new actin-filled projections that formed away from the cap. However, 95K remained tightly associated with the cap. Poisoning cells with sodium azide inhibited capping but not patching of ligand. In azide-poisoned cells, myosin and 95K did not co-patch with Con A, whereas copatching of 120K and actin with Con A occurred as usual. Our results support the hypothesis that capping is an actomyosin-mediated motile event that involves a sliding interaction between actin filaments, which are anchored through the membrane to ligand patches, and myosin in the cortex. They are also consistent with a role for 120K in the formation of surface projections by promoting growth and/or cross-linking of actin filaments within projections, and with a role for 95K in regulating actomyosin-mediated contractility, earlier proposals based on the in vitro properties of these two proteins.

UR - http://www.scopus.com/inward/record.url?scp=0021876405&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021876405&partnerID=8YFLogxK

M3 - Article

C2 - 3889011

AN - SCOPUS:0021876405

VL - 100

SP - 1884

EP - 1893

JO - Journal of Cell Biology

JF - Journal of Cell Biology

SN - 0021-9525

IS - 6

ER -