Kv1 potassium channel C-terminus constant HRETE region: Arginine substitution affects surface protein level and conductance level of subfamily members differentially

Jing Zhu, Barbara Gomez, Itaru Watanabe, William B. Thornhill

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

We have shown previously that truncating all of the variable cytoplasmic C-terminus of Kv1.1 potassium channels to G421stop had only a small inhibitory effect on their cell surface conductance density levels and cell surface protein levels. Here we investigated the role of a highly conserved cytoplasmic C-terminal charged region of five amino acids (HRETE) of the S6 transmembrane domain in the protein and conductance expression of Kv1.1, Kv1.2, and Kv1.4 channels. For Kv1.1 we found that E420stop, T419stop, and E418stop showed cell surface conductance densities and cell surface protein levels similar to full length control, whereas R417stop and H416stop exhibited essentially no conductance but their surface protein levels were similar to full length control. A bulky non-negatively charged hydrophilic amino acid at position 417 appeared to be critical for wild type gating of Kv1.1 because R417K and R417Q rescued conductance levels whereas R417A or R417E did not. The R417A mutation in the full length Kv1.1 also exhibited surface protein levels similar to control but it did not exhibit significant conductance. In contrast, mutation of the equivalent arginine to alanine in full length Kv1.2 and Kv1.4 appeared to have little or no effect on channel conductance but rather decreased cell surface protein levels by inducing partial high ER retention. These findings are consistent with the notion that the arginine amino acid in the HRETE region plays a different role in affecting conductance levels or cell surface protein levels of very closely related Kv1 potassium channels.

Original languageEnglish (US)
Pages (from-to)194-205
Number of pages12
JournalMolecular Membrane Biology
Volume24
Issue number3
DOIs
StatePublished - May 2007
Externally publishedYes

Keywords

  • Cell surface expression
  • K channels
  • Trafficking

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Kv1 potassium channel C-terminus constant HRETE region: Arginine substitution affects surface protein level and conductance level of subfamily members differentially'. Together they form a unique fingerprint.

Cite this