K+ and Rb+ transport by the rabbit CCD: Rb+ reduces K+ conductance and Na+ transport

D. H. Warden, M. Hayashi, Victor L. Schuster, J. B. Stokes

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

We compared transport of K+ and Rb+ across the rabbit cortical collecting duct to gain insight into the mechanisms of K+ secretion. Passive tracer fluxes, active secretory rates, electrophysiological behavior, and the ability of each ion to support Na+-K+-ATPase activity were determined. When active transport was inhibited by amiloride, K+ permeability was twice the Rb+ permeability. Transepithelial conductance (G(T)) was half as great in solutions where 5 mM Rb+ replaced 5 mM K+. When 4 mM Ba2+ was added to the lumen, both Rb+ and K+ permeability fell to values not different from that expected for paracellular diffusion. The relationship between Ba2+-induced changes in the K+ and Rb+ permeabilities and in the simultaneously measured G(T) provides strong evidence that K+ transport across the apical membrane is largely, if not exclusively, conductive. We also determined that net K+ secretion is greater than net Rb+ secretion (when each is the abundant ion). The reasons for this difference probably involve several steps in the K+ secretory process and include the following: 1) reduced ATPase activity in the presence of Rb+ (~80%) compared with K+, 2) reduction of Na+ absorption, and 3) partial blockade of the apical (and perhaps basolateral) K+ conductance. Although there were quantitative differences between K+ and Rb+ transport, we found no evidence suggesting that these ions are transported by different mechanisms.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Fluid and Electrolyte Physiology
Volume257
Issue number1
StatePublished - 1989
Externally publishedYes

Fingerprint

Permeability
Rabbits
Ions
Secretory Rate
Aptitude
Amiloride
Active Biological Transport
Secretory Pathway
Adenosine Triphosphatases
Membranes

ASJC Scopus subject areas

  • Physiology

Cite this

K+ and Rb+ transport by the rabbit CCD : Rb+ reduces K+ conductance and Na+ transport. / Warden, D. H.; Hayashi, M.; Schuster, Victor L.; Stokes, J. B.

In: American Journal of Physiology - Renal Fluid and Electrolyte Physiology, Vol. 257, No. 1, 1989.

Research output: Contribution to journalArticle

@article{fa4f99aa01714ff3b3a19eaa6735be5d,
title = "K+ and Rb+ transport by the rabbit CCD: Rb+ reduces K+ conductance and Na+ transport",
abstract = "We compared transport of K+ and Rb+ across the rabbit cortical collecting duct to gain insight into the mechanisms of K+ secretion. Passive tracer fluxes, active secretory rates, electrophysiological behavior, and the ability of each ion to support Na+-K+-ATPase activity were determined. When active transport was inhibited by amiloride, K+ permeability was twice the Rb+ permeability. Transepithelial conductance (G(T)) was half as great in solutions where 5 mM Rb+ replaced 5 mM K+. When 4 mM Ba2+ was added to the lumen, both Rb+ and K+ permeability fell to values not different from that expected for paracellular diffusion. The relationship between Ba2+-induced changes in the K+ and Rb+ permeabilities and in the simultaneously measured G(T) provides strong evidence that K+ transport across the apical membrane is largely, if not exclusively, conductive. We also determined that net K+ secretion is greater than net Rb+ secretion (when each is the abundant ion). The reasons for this difference probably involve several steps in the K+ secretory process and include the following: 1) reduced ATPase activity in the presence of Rb+ (~80{\%}) compared with K+, 2) reduction of Na+ absorption, and 3) partial blockade of the apical (and perhaps basolateral) K+ conductance. Although there were quantitative differences between K+ and Rb+ transport, we found no evidence suggesting that these ions are transported by different mechanisms.",
author = "Warden, {D. H.} and M. Hayashi and Schuster, {Victor L.} and Stokes, {J. B.}",
year = "1989",
language = "English (US)",
volume = "257",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - K+ and Rb+ transport by the rabbit CCD

T2 - Rb+ reduces K+ conductance and Na+ transport

AU - Warden, D. H.

AU - Hayashi, M.

AU - Schuster, Victor L.

AU - Stokes, J. B.

PY - 1989

Y1 - 1989

N2 - We compared transport of K+ and Rb+ across the rabbit cortical collecting duct to gain insight into the mechanisms of K+ secretion. Passive tracer fluxes, active secretory rates, electrophysiological behavior, and the ability of each ion to support Na+-K+-ATPase activity were determined. When active transport was inhibited by amiloride, K+ permeability was twice the Rb+ permeability. Transepithelial conductance (G(T)) was half as great in solutions where 5 mM Rb+ replaced 5 mM K+. When 4 mM Ba2+ was added to the lumen, both Rb+ and K+ permeability fell to values not different from that expected for paracellular diffusion. The relationship between Ba2+-induced changes in the K+ and Rb+ permeabilities and in the simultaneously measured G(T) provides strong evidence that K+ transport across the apical membrane is largely, if not exclusively, conductive. We also determined that net K+ secretion is greater than net Rb+ secretion (when each is the abundant ion). The reasons for this difference probably involve several steps in the K+ secretory process and include the following: 1) reduced ATPase activity in the presence of Rb+ (~80%) compared with K+, 2) reduction of Na+ absorption, and 3) partial blockade of the apical (and perhaps basolateral) K+ conductance. Although there were quantitative differences between K+ and Rb+ transport, we found no evidence suggesting that these ions are transported by different mechanisms.

AB - We compared transport of K+ and Rb+ across the rabbit cortical collecting duct to gain insight into the mechanisms of K+ secretion. Passive tracer fluxes, active secretory rates, electrophysiological behavior, and the ability of each ion to support Na+-K+-ATPase activity were determined. When active transport was inhibited by amiloride, K+ permeability was twice the Rb+ permeability. Transepithelial conductance (G(T)) was half as great in solutions where 5 mM Rb+ replaced 5 mM K+. When 4 mM Ba2+ was added to the lumen, both Rb+ and K+ permeability fell to values not different from that expected for paracellular diffusion. The relationship between Ba2+-induced changes in the K+ and Rb+ permeabilities and in the simultaneously measured G(T) provides strong evidence that K+ transport across the apical membrane is largely, if not exclusively, conductive. We also determined that net K+ secretion is greater than net Rb+ secretion (when each is the abundant ion). The reasons for this difference probably involve several steps in the K+ secretory process and include the following: 1) reduced ATPase activity in the presence of Rb+ (~80%) compared with K+, 2) reduction of Na+ absorption, and 3) partial blockade of the apical (and perhaps basolateral) K+ conductance. Although there were quantitative differences between K+ and Rb+ transport, we found no evidence suggesting that these ions are transported by different mechanisms.

UR - http://www.scopus.com/inward/record.url?scp=0024340870&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024340870&partnerID=8YFLogxK

M3 - Article

C2 - 2546444

AN - SCOPUS:0024340870

VL - 257

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 1

ER -