Isolation, genomic organization, and expression analysis of Men1, the murine homolog of the MEN1 gene

Siradanahalli C. Guru, Judy S. Crabtree, Kevin D. Brown, Karen J. Dunn, Pachiappan Manickam, Nijaguna B. Prasad, Danny Wangsa, A. Lee Burns, Allen M. Spiegel, Stephen J. Marx, William J. Pavan, Francis S. Collins, Settara C. Chandrasekharappa

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

The mouse homolog of the human MEN1 gene, which is defective in a dominant familial cancer syndrome, multiple endocrine neoplasia type 1 (MEN1), has been identified and characterized. The mouse Men1 transcript contains an open reading frame encoding a protein of 611 amino acids which has 97% identity and 98% similarity to human menin. Sequence of the entire Men1 gene (9.3 kb) was assembled, revealing 10 exons, with exon 1 being non- coding; a polymorphic tetranucleotide repeat was located in the 5'-flanking region. The exon-intron organization and the size of the coding exons 2-9 were well conserved between the human and mouse genes. Fluorescence in situ hybridization localized the Men1 gene to mouse Chromosome (Chr) 19, a region known to be syntenic to human Chr 11q13, the locus for the MEN1 gene. Northern analysis indicated two messages-2.7 kb and 3.1 kb-expressed in all stages of the embryo analyzed and in all eight adult tissues tested. The larger transcript differs from the smaller by the inclusion of an unspliced intron 1. Whole-mount in situ hybridization of 10.5-day and 11.5-day embryos showed ubiquitous expression of Men1 RNA. Western analysis with antibodies raised against a conserved C-terminal peptide identified an approximately 67- kDa protein in the lysates of adult mouse brain, kidney, liver, pancreas, and spleen tissues, consistent with the size of human menin. The levels of mouse menin do not appear to fluctuate during the cell cycle.

Original languageEnglish (US)
Pages (from-to)592-596
Number of pages5
JournalMammalian Genome
Volume10
Issue number6
DOIs
StatePublished - 1999
Externally publishedYes

ASJC Scopus subject areas

  • Genetics

Fingerprint

Dive into the research topics of 'Isolation, genomic organization, and expression analysis of Men1, the murine homolog of the MEN1 gene'. Together they form a unique fingerprint.

Cite this