Isolated plasma membranes regulate neurotransmitter expression and facilitate effects of a soluble brain cholinergic factor

J. A. Kessler, G. Conn, Victor Bernard Hatcher

Research output: Contribution to journalArticle

50 Citations (Scopus)

Abstract

The choice of which transmitter will be expressed by a neuron is influenced by diffusible differentiating factors produced by a variety of nonneuronal cells. In this study we show that human, bovine, and rat brains contain a soluble heparin-binding factor that stimulates cholinergic and peptidergic expression. We also show that neuronal contact with other cell membranes influences neurotransmitter development and acts synergistically with the effects of the soluble brain factor. Exposure of cultured sympathetic neurons to purified plasma membranes derived either from cultured Schwann cells or from cultured sympathetic neurons promoted expression of choline acetyltransferase (CAT), a cholinergic trait, and of substance P (SP). CAT activity and SP were also stimulated by a 50-kDa soluble protein that was purified 14,000-fold from human, calf, and rat brain by heparin-Sepharose affinity chromatography. CAT activity after concurrent treatment with plasma membranes and the soluble factor far exceeded the sum of the enzyme activities after the individual treatments, suggesting that membrane molecules and the factor facilitated each other. Thus, cell-surface molecules, which have been shown previously to influence neuronal morphogenesis and neurite elongation, may also help determine the transmitter phenotype of the neuron. Moreover, cell-surface molecules may modulate the effects of diffusible differentiating factors.

Original languageEnglish (US)
Pages (from-to)3528-3232
Number of pages297
JournalProceedings of the National Academy of Sciences of the United States of America
Volume83
Issue number10
StatePublished - 1986

Fingerprint

Cholinergic Agents
Choline O-Acetyltransferase
Neurotransmitter Agents
Cell Membrane
Neurons
Brain
Substance P
Agarose Chromatography
Schwann Cells
Neurites
Morphogenesis
Affinity Chromatography
Heparin
Cultured Cells
Phenotype
Membranes
Enzymes
Proteins

ASJC Scopus subject areas

  • General
  • Genetics

Cite this

@article{f1c33dc220d84093ab141ad897656c7d,
title = "Isolated plasma membranes regulate neurotransmitter expression and facilitate effects of a soluble brain cholinergic factor",
abstract = "The choice of which transmitter will be expressed by a neuron is influenced by diffusible differentiating factors produced by a variety of nonneuronal cells. In this study we show that human, bovine, and rat brains contain a soluble heparin-binding factor that stimulates cholinergic and peptidergic expression. We also show that neuronal contact with other cell membranes influences neurotransmitter development and acts synergistically with the effects of the soluble brain factor. Exposure of cultured sympathetic neurons to purified plasma membranes derived either from cultured Schwann cells or from cultured sympathetic neurons promoted expression of choline acetyltransferase (CAT), a cholinergic trait, and of substance P (SP). CAT activity and SP were also stimulated by a 50-kDa soluble protein that was purified 14,000-fold from human, calf, and rat brain by heparin-Sepharose affinity chromatography. CAT activity after concurrent treatment with plasma membranes and the soluble factor far exceeded the sum of the enzyme activities after the individual treatments, suggesting that membrane molecules and the factor facilitated each other. Thus, cell-surface molecules, which have been shown previously to influence neuronal morphogenesis and neurite elongation, may also help determine the transmitter phenotype of the neuron. Moreover, cell-surface molecules may modulate the effects of diffusible differentiating factors.",
author = "Kessler, {J. A.} and G. Conn and Hatcher, {Victor Bernard}",
year = "1986",
language = "English (US)",
volume = "83",
pages = "3528--3232",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "10",

}

TY - JOUR

T1 - Isolated plasma membranes regulate neurotransmitter expression and facilitate effects of a soluble brain cholinergic factor

AU - Kessler, J. A.

AU - Conn, G.

AU - Hatcher, Victor Bernard

PY - 1986

Y1 - 1986

N2 - The choice of which transmitter will be expressed by a neuron is influenced by diffusible differentiating factors produced by a variety of nonneuronal cells. In this study we show that human, bovine, and rat brains contain a soluble heparin-binding factor that stimulates cholinergic and peptidergic expression. We also show that neuronal contact with other cell membranes influences neurotransmitter development and acts synergistically with the effects of the soluble brain factor. Exposure of cultured sympathetic neurons to purified plasma membranes derived either from cultured Schwann cells or from cultured sympathetic neurons promoted expression of choline acetyltransferase (CAT), a cholinergic trait, and of substance P (SP). CAT activity and SP were also stimulated by a 50-kDa soluble protein that was purified 14,000-fold from human, calf, and rat brain by heparin-Sepharose affinity chromatography. CAT activity after concurrent treatment with plasma membranes and the soluble factor far exceeded the sum of the enzyme activities after the individual treatments, suggesting that membrane molecules and the factor facilitated each other. Thus, cell-surface molecules, which have been shown previously to influence neuronal morphogenesis and neurite elongation, may also help determine the transmitter phenotype of the neuron. Moreover, cell-surface molecules may modulate the effects of diffusible differentiating factors.

AB - The choice of which transmitter will be expressed by a neuron is influenced by diffusible differentiating factors produced by a variety of nonneuronal cells. In this study we show that human, bovine, and rat brains contain a soluble heparin-binding factor that stimulates cholinergic and peptidergic expression. We also show that neuronal contact with other cell membranes influences neurotransmitter development and acts synergistically with the effects of the soluble brain factor. Exposure of cultured sympathetic neurons to purified plasma membranes derived either from cultured Schwann cells or from cultured sympathetic neurons promoted expression of choline acetyltransferase (CAT), a cholinergic trait, and of substance P (SP). CAT activity and SP were also stimulated by a 50-kDa soluble protein that was purified 14,000-fold from human, calf, and rat brain by heparin-Sepharose affinity chromatography. CAT activity after concurrent treatment with plasma membranes and the soluble factor far exceeded the sum of the enzyme activities after the individual treatments, suggesting that membrane molecules and the factor facilitated each other. Thus, cell-surface molecules, which have been shown previously to influence neuronal morphogenesis and neurite elongation, may also help determine the transmitter phenotype of the neuron. Moreover, cell-surface molecules may modulate the effects of diffusible differentiating factors.

UR - http://www.scopus.com/inward/record.url?scp=0022545604&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022545604&partnerID=8YFLogxK

M3 - Article

VL - 83

SP - 3528

EP - 3232

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 10

ER -