Intersensory selective attention and temporal orienting operate in parallel and are instantiated in spatially distinct sensory and motor cortices

Ulrich Pomper, Julian Keil, John J. Foxe, Daniel Senkowski

Research output: Contribution to journalArticle

17 Scopus citations


Knowledge about the sensory modality in which a forthcoming event might occur permits anticipatory intersensory attention. Information as to when exactly an event occurs enables temporal orienting. Intersensory and temporal attention mechanisms are often deployed simultaneously, but as yet it is unknown whether these processes operate interactively or in parallel. In this human electroencephalography study, we manipulated intersensory attention and temporal orienting in the same paradigm. A continuous stream of bisensory visuo-tactile inputs was presented, and a preceding auditory cue indicated to which modality participants should attend (visual or tactile). Temporal orienting was manipulated blockwise by presenting stimuli either at regular or irregular intervals. Using linear beamforming, we examined neural oscillations at virtual channels in sensory and motor cortices. Both attentional processes simultaneously modulated the power of anticipatory delta- and beta-band oscillations, as well as delta-band phase coherence. Modulations in sensory cortices reflected intersensory attention, indicative of modality-specific gating mechanisms. Modulations in motor and partly in somatosensory cortex reflected temporal orienting, indicative of a supramodal preparatory mechanism. We found no evidence for interactions between intersensory attention and temporal orienting, suggesting that these two mechanisms act in parallel and largely independent of each other in sensory and motor cortices. Hum Brain Mapp 36:3246–3259, 2015.

Original languageEnglish (US)
Pages (from-to)3246-3259
Number of pages14
JournalHuman Brain Mapping
Issue number8
StatePublished - Jan 1 2015



  • alpha band
  • beamforming
  • beta band
  • electroencephalography
  • oscillations
  • supramodal

ASJC Scopus subject areas

  • Anatomy
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Neurology
  • Clinical Neurology

Cite this