Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway

Leonid Tarassishin, Hyeon Sook Suh, Sunhee C. Lee

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

Background: Microglia are the principal cells involved in the innate immune response in the CNS. Activated microglia produce a number of proinflammatory cytokines implicated in neurotoxicity but they also are a major source of anti-inflammatory cytokines, antiviral proteins and growth factors. Therefore, an immune therapy aiming at suppressing the proinflammatory phenotype while enhancing the anti-inflammatory, growth promoting phenotype would be of great benefit. In the current study, we tested the hypothesis that interferon regulatory factor 3 (IRF3), a transcription factor required for the induction of IFNβ following TLR3 or TLR4 activation, is critical to the microglial phenotype change from proinflammatory to anti-inflammatory, and that this phenotype change can be greatly facilitated by IRF3 gene transfer.Methods: Cultures of primary human fetal microglia were transduced with IRF3 using recombinant adenovirus (Ad-IRF3) and subjected to microarray analysis, real-time PCR, immunoblotting and ELISA to determine inflammatory gene expression. Two different types of immune stimuli were tested, the TLR ligands, poly IC (PIC) and LPS, and the proinflammatory cytokines, IL-1/IFNγ. In addition, the role of the PI3K/Akt pathway was examined by use of a pharmacological inhibitor, LY294002.Results: Our results show that Ad-IRF3 suppressed proinflammatory genes (IL-1α, IL-1β, TNFα, IL-6, IL-8 and CXCL1) and enhanced anti-inflammatory genes (IL-1 receptor antagonist, IL-10 and IFNβ) in microglia, regardless of the cell stimuli applied. Furthermore, Ad-IRF3 activated Akt, and LY294002 reversed the effects of Ad-IRF3 on microglial inflammatory gene expression. pAkt was critical in LPS- or PIC-induced production of IL-10 and IL-1ra. Significantly, microglial IFNβ protein production was also dependent on pAkt and required both Ad-IRF3 and immunological stimuli (PIC > IL-1/IFNγ). pAkt played much less prominent and variable roles in microglial proinflammatory gene expression. This anti-inflammatory promoting role of PI3K/Akt appeared to be specific to microglia, since astrocyte proinflammatory gene expression (as well as IFNβ expression) required PI3K/Akt.Conclusions: Our results show a novel anti-inflammatory role for the PI3K/Akt signaling pathway in microglia. They further suggest that IRF3 gene therapy could facilitate the microglial phenotype switch from proinflammatory ("M1-like") to anti-inflammatory and immunomodulatory ("M2-like"), in part, by augmenting the level of pAkt.

Original languageEnglish (US)
Article number187
JournalJournal of Neuroinflammation
Volume8
DOIs
StatePublished - Dec 30 2011

Fingerprint

Interferon Regulatory Factor-3
Microglia
Phosphatidylinositol 3-Kinases
Anti-Inflammatory Agents
Interleukin-1
Phenotype
Gene Expression
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
Cytokines
Interleukin-10
Genes
Interleukin 1 Receptor Antagonist Protein
Interleukin-1 Receptors
Microarray Analysis
Interleukin-8
Immunoblotting
Innate Immunity
Adenoviridae
Astrocytes
Genetic Therapy

Keywords

  • Antiviral genes
  • Chemokines
  • Cytokines
  • Human
  • Innate immunity
  • Interferon-beta
  • Microarray
  • Neurodegeneration
  • Neuroinflammation
  • Tlr

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience
  • Neurology
  • Immunology
  • Neuroscience(all)

Cite this

Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. / Tarassishin, Leonid; Suh, Hyeon Sook; Lee, Sunhee C.

In: Journal of Neuroinflammation, Vol. 8, 187, 30.12.2011.

Research output: Contribution to journalArticle

@article{20652290f1b846cb9971171e5017cdd4,
title = "Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway",
abstract = "Background: Microglia are the principal cells involved in the innate immune response in the CNS. Activated microglia produce a number of proinflammatory cytokines implicated in neurotoxicity but they also are a major source of anti-inflammatory cytokines, antiviral proteins and growth factors. Therefore, an immune therapy aiming at suppressing the proinflammatory phenotype while enhancing the anti-inflammatory, growth promoting phenotype would be of great benefit. In the current study, we tested the hypothesis that interferon regulatory factor 3 (IRF3), a transcription factor required for the induction of IFNβ following TLR3 or TLR4 activation, is critical to the microglial phenotype change from proinflammatory to anti-inflammatory, and that this phenotype change can be greatly facilitated by IRF3 gene transfer.Methods: Cultures of primary human fetal microglia were transduced with IRF3 using recombinant adenovirus (Ad-IRF3) and subjected to microarray analysis, real-time PCR, immunoblotting and ELISA to determine inflammatory gene expression. Two different types of immune stimuli were tested, the TLR ligands, poly IC (PIC) and LPS, and the proinflammatory cytokines, IL-1/IFNγ. In addition, the role of the PI3K/Akt pathway was examined by use of a pharmacological inhibitor, LY294002.Results: Our results show that Ad-IRF3 suppressed proinflammatory genes (IL-1α, IL-1β, TNFα, IL-6, IL-8 and CXCL1) and enhanced anti-inflammatory genes (IL-1 receptor antagonist, IL-10 and IFNβ) in microglia, regardless of the cell stimuli applied. Furthermore, Ad-IRF3 activated Akt, and LY294002 reversed the effects of Ad-IRF3 on microglial inflammatory gene expression. pAkt was critical in LPS- or PIC-induced production of IL-10 and IL-1ra. Significantly, microglial IFNβ protein production was also dependent on pAkt and required both Ad-IRF3 and immunological stimuli (PIC > IL-1/IFNγ). pAkt played much less prominent and variable roles in microglial proinflammatory gene expression. This anti-inflammatory promoting role of PI3K/Akt appeared to be specific to microglia, since astrocyte proinflammatory gene expression (as well as IFNβ expression) required PI3K/Akt.Conclusions: Our results show a novel anti-inflammatory role for the PI3K/Akt signaling pathway in microglia. They further suggest that IRF3 gene therapy could facilitate the microglial phenotype switch from proinflammatory ({"}M1-like{"}) to anti-inflammatory and immunomodulatory ({"}M2-like{"}), in part, by augmenting the level of pAkt.",
keywords = "Antiviral genes, Chemokines, Cytokines, Human, Innate immunity, Interferon-beta, Microarray, Neurodegeneration, Neuroinflammation, Tlr",
author = "Leonid Tarassishin and Suh, {Hyeon Sook} and Lee, {Sunhee C.}",
year = "2011",
month = "12",
day = "30",
doi = "10.1186/1742-2094-8-187",
language = "English (US)",
volume = "8",
journal = "Journal of Neuroinflammation",
issn = "1742-2094",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway

AU - Tarassishin, Leonid

AU - Suh, Hyeon Sook

AU - Lee, Sunhee C.

PY - 2011/12/30

Y1 - 2011/12/30

N2 - Background: Microglia are the principal cells involved in the innate immune response in the CNS. Activated microglia produce a number of proinflammatory cytokines implicated in neurotoxicity but they also are a major source of anti-inflammatory cytokines, antiviral proteins and growth factors. Therefore, an immune therapy aiming at suppressing the proinflammatory phenotype while enhancing the anti-inflammatory, growth promoting phenotype would be of great benefit. In the current study, we tested the hypothesis that interferon regulatory factor 3 (IRF3), a transcription factor required for the induction of IFNβ following TLR3 or TLR4 activation, is critical to the microglial phenotype change from proinflammatory to anti-inflammatory, and that this phenotype change can be greatly facilitated by IRF3 gene transfer.Methods: Cultures of primary human fetal microglia were transduced with IRF3 using recombinant adenovirus (Ad-IRF3) and subjected to microarray analysis, real-time PCR, immunoblotting and ELISA to determine inflammatory gene expression. Two different types of immune stimuli were tested, the TLR ligands, poly IC (PIC) and LPS, and the proinflammatory cytokines, IL-1/IFNγ. In addition, the role of the PI3K/Akt pathway was examined by use of a pharmacological inhibitor, LY294002.Results: Our results show that Ad-IRF3 suppressed proinflammatory genes (IL-1α, IL-1β, TNFα, IL-6, IL-8 and CXCL1) and enhanced anti-inflammatory genes (IL-1 receptor antagonist, IL-10 and IFNβ) in microglia, regardless of the cell stimuli applied. Furthermore, Ad-IRF3 activated Akt, and LY294002 reversed the effects of Ad-IRF3 on microglial inflammatory gene expression. pAkt was critical in LPS- or PIC-induced production of IL-10 and IL-1ra. Significantly, microglial IFNβ protein production was also dependent on pAkt and required both Ad-IRF3 and immunological stimuli (PIC > IL-1/IFNγ). pAkt played much less prominent and variable roles in microglial proinflammatory gene expression. This anti-inflammatory promoting role of PI3K/Akt appeared to be specific to microglia, since astrocyte proinflammatory gene expression (as well as IFNβ expression) required PI3K/Akt.Conclusions: Our results show a novel anti-inflammatory role for the PI3K/Akt signaling pathway in microglia. They further suggest that IRF3 gene therapy could facilitate the microglial phenotype switch from proinflammatory ("M1-like") to anti-inflammatory and immunomodulatory ("M2-like"), in part, by augmenting the level of pAkt.

AB - Background: Microglia are the principal cells involved in the innate immune response in the CNS. Activated microglia produce a number of proinflammatory cytokines implicated in neurotoxicity but they also are a major source of anti-inflammatory cytokines, antiviral proteins and growth factors. Therefore, an immune therapy aiming at suppressing the proinflammatory phenotype while enhancing the anti-inflammatory, growth promoting phenotype would be of great benefit. In the current study, we tested the hypothesis that interferon regulatory factor 3 (IRF3), a transcription factor required for the induction of IFNβ following TLR3 or TLR4 activation, is critical to the microglial phenotype change from proinflammatory to anti-inflammatory, and that this phenotype change can be greatly facilitated by IRF3 gene transfer.Methods: Cultures of primary human fetal microglia were transduced with IRF3 using recombinant adenovirus (Ad-IRF3) and subjected to microarray analysis, real-time PCR, immunoblotting and ELISA to determine inflammatory gene expression. Two different types of immune stimuli were tested, the TLR ligands, poly IC (PIC) and LPS, and the proinflammatory cytokines, IL-1/IFNγ. In addition, the role of the PI3K/Akt pathway was examined by use of a pharmacological inhibitor, LY294002.Results: Our results show that Ad-IRF3 suppressed proinflammatory genes (IL-1α, IL-1β, TNFα, IL-6, IL-8 and CXCL1) and enhanced anti-inflammatory genes (IL-1 receptor antagonist, IL-10 and IFNβ) in microglia, regardless of the cell stimuli applied. Furthermore, Ad-IRF3 activated Akt, and LY294002 reversed the effects of Ad-IRF3 on microglial inflammatory gene expression. pAkt was critical in LPS- or PIC-induced production of IL-10 and IL-1ra. Significantly, microglial IFNβ protein production was also dependent on pAkt and required both Ad-IRF3 and immunological stimuli (PIC > IL-1/IFNγ). pAkt played much less prominent and variable roles in microglial proinflammatory gene expression. This anti-inflammatory promoting role of PI3K/Akt appeared to be specific to microglia, since astrocyte proinflammatory gene expression (as well as IFNβ expression) required PI3K/Akt.Conclusions: Our results show a novel anti-inflammatory role for the PI3K/Akt signaling pathway in microglia. They further suggest that IRF3 gene therapy could facilitate the microglial phenotype switch from proinflammatory ("M1-like") to anti-inflammatory and immunomodulatory ("M2-like"), in part, by augmenting the level of pAkt.

KW - Antiviral genes

KW - Chemokines

KW - Cytokines

KW - Human

KW - Innate immunity

KW - Interferon-beta

KW - Microarray

KW - Neurodegeneration

KW - Neuroinflammation

KW - Tlr

UR - http://www.scopus.com/inward/record.url?scp=84855172549&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84855172549&partnerID=8YFLogxK

U2 - 10.1186/1742-2094-8-187

DO - 10.1186/1742-2094-8-187

M3 - Article

C2 - 22208359

AN - SCOPUS:84855172549

VL - 8

JO - Journal of Neuroinflammation

JF - Journal of Neuroinflammation

SN - 1742-2094

M1 - 187

ER -