Abstract
Observational studies have shown higher folate consumption to be associated with lower risk of colorectal cancer (CRC). Understanding whether and how genetic risk factors interact with folate could further elucidate the underlying mechanism. Aggregating functionally relevant genetic variants in set-based variant testing has higher power to detect gene–environment (G × E) interactions and may provide information on the underlying biological pathway. We investigated interactions between folate consumption and predicted gene expression on colorectal cancer risk across the genome. We used variant weights from the PrediXcan models of colon tissue-specific gene expression as a priori variant information for a set-based G × E approach. We harmonized total folate intake (mcg/day) based on dietary intake and supplemental use across cohort and case–control studies and calculated sex and study specific quantiles. Analyses were performed using a mixed effects score tests for interactions between folate and genetically predicted expression of 4839 genes with available genetically predicted expression. We pooled results across 23 studies for a total of 13,498 cases with colorectal tumors and 13,918 controls of European ancestry. We used a false discovery rate of 0.2 to identify genes with suggestive evidence of an interaction. We found suggestive evidence of interaction with folate intake on CRC risk for genes including glutathione S-Transferase Alpha 1 (GSTA1; p = 4.3E−4), Tonsuko Like, DNA Repair Protein (TONSL; p = 4.3E−4), and Aspartylglucosaminidase (AGA: p = 4.5E−4). We identified three genes involved in preventing or repairing DNA damage that may interact with folate consumption to alter CRC risk. Glutathione is an antioxidant, preventing cellular damage and is a downstream metabolite of homocysteine and metabolized by GSTA1. TONSL is part of a complex that functions in the recovery of double strand breaks and AGA plays a role in lysosomal breakdown of glycoprotein.
Original language | English (US) |
---|---|
Article number | 18852 |
Journal | Scientific reports |
Volume | 12 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2022 |
Externally published | Yes |
ASJC Scopus subject areas
- General
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Interactions between folate intake and genetic predictors of gene expression levels associated with colorectal cancer risk'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Interactions between folate intake and genetic predictors of gene expression levels associated with colorectal cancer risk. / Haas, Cameron B.; Su, Yu Ru; Petersen, Paneen et al.
In: Scientific reports, Vol. 12, No. 1, 18852, 12.2022.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Interactions between folate intake and genetic predictors of gene expression levels associated with colorectal cancer risk
AU - Haas, Cameron B.
AU - Su, Yu Ru
AU - Petersen, Paneen
AU - Wang, Xiaoliang
AU - Bien, Stephanie A.
AU - Lin, Yi
AU - Albanes, Demetrius
AU - Weinstein, Stephanie J.
AU - Jenkins, Mark A.
AU - Figueiredo, Jane C.
AU - Newcomb, Polly A.
AU - Casey, Graham
AU - Le Marchand, Loic
AU - Campbell, Peter T.
AU - Moreno, Victor
AU - Potter, John D.
AU - Sakoda, Lori C.
AU - Slattery, Martha L.
AU - Chan, Andrew T.
AU - Li, Li
AU - Giles, Graham G.
AU - Milne, Roger L.
AU - Gruber, Stephen B.
AU - Rennert, Gad
AU - Woods, Michael O.
AU - Gallinger, Steven J.
AU - Berndt, Sonja
AU - Hayes, Richard B.
AU - Huang, Wen Yi
AU - Wolk, Alicja
AU - White, Emily
AU - Nan, Hongmei
AU - Nassir, Rami
AU - Lindor, Noralane M.
AU - Lewinger, Juan P.
AU - Kim, Andre E.
AU - Conti, David
AU - Gauderman, W. James
AU - Buchanan, Daniel D.
AU - Peters, Ulrike
AU - Hsu, Li
N1 - Funding Information: This was supported by grant number T32 CA094880, R01-CA201407, and U01-CA164930 from the National Institutes of Health. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NCI, NIH. Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO): National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services (U01 CA164930, U01 CA137088, R01 CA059045, R01201407). Genotyping/Sequencing services were provided by the Center for Inherited Disease Research (CIDR) (X01-HG008596 and X-01-HG007585). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268201200008I. This research was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA015704. The ATBC Study is supported by the Intramural Research Program of the U.S. National Cancer Institute, National Institutes of Health, Department of Health and Human Services. COLO2&3: National Institutes of Health (R01 CA60987). The Colon Cancer Family Registry (CCFR, http://www.coloncfr.org ) is supported in part by funding from the National Cancer Institute (NCI), National Institutes of Health (NIH) (award U01 CA167551). The CCFR Set-1 (Illumina 1M/1M-Duo) and Set-2 (Illumina Omni1-Quad) scans were supported by NIH awards U01 CA122839 and R01 CA143247 (to GC). The CCFR Set-3 (Affymetrix Axiom CORECT Set array) was supported by NIH award U19 CA148107 and R01 CA81488 (to SBG). The CCFR Set-4 (Illumina OncoArray 600K SNP array) was supported by NIH award U19 CA148107 (to SBG) and by the Center for Inherited Disease Research (CIDR), which is funded by the NIH to the Johns Hopkins University, contract number HHSN268201200008I. The SFCCR Illumina HumanCytoSNP array was supported through NCI award R01 CA076366 (to PAN). Additional funding for the OFCCR/ARCTIC was through award GL201-043 from the Ontario Research Fund (to BWZ), award 112746 from the Canadian Institutes of Health Research (to TJH), through a Cancer Risk Evaluation (CaRE) Program grant from the Canadian Cancer Society (to SG), and through generous support from the Ontario Ministry of Research and Innovation. Colorectal Cancer Transdisciplinary (CORECT) Study: The CORECT Study was supported by the National Cancer Institute, National Institutes of Health (NCI/NIH), U.S. Department of Health and Human Services (grant numbers U19 CA148107, R01 CA81488, P30 CA014089, R01 CA197350, P01 CA196569, R01 CA201407) and National Institutes of Environmental Health Sciences, National Institutes of Health (grant number T32 ES013678). CPS-II: The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study-II (CPS-II) cohort. This study was conducted with Institutional Review Board approval. DALS: National Institutes of Health (R01 CA48998 to M. L. Slattery). Harvard cohorts (HPFS, NHS, PHS): HPFS is supported by the National Institutes of Health (P01 CA055075, UM1 CA167552, U01 CA167552, R01 CA137178, R01 CA151993, and R35 CA197735), NHS by the National Institutes of Health (R01 CA137178, P01 CA087969, UM1 CA186107, R01 CA151993, and R35 CA197735) and PHS by the National Institutes of Health (R01 CA042182). Kentucky: This work was supported by the following grant support: Clinical Investigator Award from Damon Runyon Cancer Research Foundation (CI-8); NCI R01CA136726. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 509348, 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry (VCR) and the Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian Cancer Database. MEC: National Institutes of Health (R37 CA54281, P01 CA033619, and R01 CA063464). MECC: This work was supported by the National Institutes of Health, U.S. Department of Health and Human Services (R01 CA81488 to SBG and GR). NFCCR: This work was supported by an Interdisciplinary Health Research Team award from the Canadian Institutes of Health Research (CRT 43821); the National Institutes of Health, U.S. Department of Health and Human Serivces (U01 CA74783); and National Cancer Institute of Canada grants (18223 and 18226). The authors wish to acknowledge the contribution of Alexandre Belisle and the genotyping team of the McGill University and Génome Québec Innovation Centre, Montréal, Canada, for genotyping the Sequenom panel in the NFCCR samples. Funding was provided to Michael O. Woods by the Canadian Cancer Society Research Institute. OFCCR/ARCTIC: Additional funding for the OFCCR/ARCTIC was through award GL201-043 from the Ontario Research Fund (to BWZ), award 112746 from the Canadian Institutes of Health Research (to TJH), through a Cancer Risk Evaluation (CaRE) Program grant from the Canadian Cancer Society (to SG), and through generous support from the Ontario Ministry of Research and Innovation. PLCO: Intramural Research Program of the Division of Cancer Epidemiology and Genetics and supported by contracts from the Division of Cancer Prevention, National Cancer Institute, NIH, DHHS. Funding was provided by National Institutes of Health (NIH), Genes, Environment and Health Initiative (GEI) Z01 CP 010200, NIH U01 HG004446, and NIH GEI U01 HG 004438. Swedish Mammography Cohort and Cohort of Swedish Men: This work is supported by the Swedish Research Council /Infrastructure grant, the Swedish Cancer Foundation, and the Karolinska Institute´s Distinguished Professor Award to Alicja Wolk. VITAL: National Institutes of Health (K05 CA154337). WHI: The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C. SPAIN: Colorectal Cancer Genetics and Genomics, Spanish study was supported by Instituto de Salud Carlos III, co-funded by FEDER funds—a way to build Europe– (grants PI14-613 and PI09-1286), Agency for Management of University and Research Grants (AGAUR) of the Catalan Government (grant 2017SGR723), and Junta de Castilla y León (grant LE22A10-2). Sample collection of this work was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d’Oncología de Catalunya (XBTC), Plataforma Biobancos PT13/0010/0013 and ICOBIOBANC, sponsored by the Catalan Institute of Oncology. PMH-SCCFR: National Institutes of Health (R01 CA076366 to P. Newcomb and U01 CA074794 to J. Potter). Funding Information: CPS-II: The authors thank the CPS-II participants and Study Management Group for their invaluable contributions to this research. The authors would also like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program. The Colon CFR graciously thanks the generous contributions of their 42,500 study participants, dedication of study staff, and the financial support from the U.S. National Cancer Institute, without which this important registry would not exist. The content of this manuscript does not necessarily reflect the views or policies of the NIH or any of the collaborating centers in the CCFR, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government, any cancer registry, or the CCFR. Harvard cohorts (HPFS, NHS, PHS): The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required. We would like to thank the participants and staff of the HPFS, NHS and PHS for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data. Kentucky: We would like to acknowledge the staff at the Kentucky Cancer Registry. PLCO: The authors thank the PLCO Cancer Screening Trial screening center investigators and the staff from Information Management Services Inc and Westat Inc. Most importantly, we thank the study participants for their contributions that made this study possible. SFCCR: The authors would like to thank the study participants and staff of the Hormones and Colon Cancer and Seattle Cancer Family Registry studies (CORE Studies). WHI: The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf. Where authors are identified as personnel of the International Agency for Research on Cancer / World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organization. Funding Information: CPS-II: The authors thank the CPS-II participants and Study Management Group for their invaluable contributions to this research. The authors would also like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program. The Colon CFR graciously thanks the generous contributions of their 42,500 study participants, dedication of study staff, and the financial support from the U.S. National Cancer Institute, without which this important registry would not exist. The content of this manuscript does not necessarily reflect the views or policies of the NIH or any of the collaborating centers in the CCFR, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government, any cancer registry, or the CCFR. Harvard cohorts (HPFS, NHS, PHS): The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required. We would like to thank the participants and staff of the HPFS, NHS and PHS for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data. Kentucky: We would like to acknowledge the staff at the Kentucky Cancer Registry. PLCO: The authors thank the PLCO Cancer Screening Trial screening center investigators and the staff from Information Management Services Inc and Westat Inc. Most importantly, we thank the study participants for their contributions that made this study possible. SFCCR: The authors would like to thank the study participants and staff of the Hormones and Colon Cancer and Seattle Cancer Family Registry studies (CORE Studies). WHI: The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf . Publisher Copyright: © 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Observational studies have shown higher folate consumption to be associated with lower risk of colorectal cancer (CRC). Understanding whether and how genetic risk factors interact with folate could further elucidate the underlying mechanism. Aggregating functionally relevant genetic variants in set-based variant testing has higher power to detect gene–environment (G × E) interactions and may provide information on the underlying biological pathway. We investigated interactions between folate consumption and predicted gene expression on colorectal cancer risk across the genome. We used variant weights from the PrediXcan models of colon tissue-specific gene expression as a priori variant information for a set-based G × E approach. We harmonized total folate intake (mcg/day) based on dietary intake and supplemental use across cohort and case–control studies and calculated sex and study specific quantiles. Analyses were performed using a mixed effects score tests for interactions between folate and genetically predicted expression of 4839 genes with available genetically predicted expression. We pooled results across 23 studies for a total of 13,498 cases with colorectal tumors and 13,918 controls of European ancestry. We used a false discovery rate of 0.2 to identify genes with suggestive evidence of an interaction. We found suggestive evidence of interaction with folate intake on CRC risk for genes including glutathione S-Transferase Alpha 1 (GSTA1; p = 4.3E−4), Tonsuko Like, DNA Repair Protein (TONSL; p = 4.3E−4), and Aspartylglucosaminidase (AGA: p = 4.5E−4). We identified three genes involved in preventing or repairing DNA damage that may interact with folate consumption to alter CRC risk. Glutathione is an antioxidant, preventing cellular damage and is a downstream metabolite of homocysteine and metabolized by GSTA1. TONSL is part of a complex that functions in the recovery of double strand breaks and AGA plays a role in lysosomal breakdown of glycoprotein.
AB - Observational studies have shown higher folate consumption to be associated with lower risk of colorectal cancer (CRC). Understanding whether and how genetic risk factors interact with folate could further elucidate the underlying mechanism. Aggregating functionally relevant genetic variants in set-based variant testing has higher power to detect gene–environment (G × E) interactions and may provide information on the underlying biological pathway. We investigated interactions between folate consumption and predicted gene expression on colorectal cancer risk across the genome. We used variant weights from the PrediXcan models of colon tissue-specific gene expression as a priori variant information for a set-based G × E approach. We harmonized total folate intake (mcg/day) based on dietary intake and supplemental use across cohort and case–control studies and calculated sex and study specific quantiles. Analyses were performed using a mixed effects score tests for interactions between folate and genetically predicted expression of 4839 genes with available genetically predicted expression. We pooled results across 23 studies for a total of 13,498 cases with colorectal tumors and 13,918 controls of European ancestry. We used a false discovery rate of 0.2 to identify genes with suggestive evidence of an interaction. We found suggestive evidence of interaction with folate intake on CRC risk for genes including glutathione S-Transferase Alpha 1 (GSTA1; p = 4.3E−4), Tonsuko Like, DNA Repair Protein (TONSL; p = 4.3E−4), and Aspartylglucosaminidase (AGA: p = 4.5E−4). We identified three genes involved in preventing or repairing DNA damage that may interact with folate consumption to alter CRC risk. Glutathione is an antioxidant, preventing cellular damage and is a downstream metabolite of homocysteine and metabolized by GSTA1. TONSL is part of a complex that functions in the recovery of double strand breaks and AGA plays a role in lysosomal breakdown of glycoprotein.
UR - http://www.scopus.com/inward/record.url?scp=85141394104&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141394104&partnerID=8YFLogxK
U2 - 10.1038/s41598-022-23451-y
DO - 10.1038/s41598-022-23451-y
M3 - Article
C2 - 36344807
AN - SCOPUS:85141394104
VL - 12
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
IS - 1
M1 - 18852
ER -