Insulin-dependent covalent reassociation of isolated alpha beta heterodimeric insulin receptors into an alpha 2 beta 2 heterotetrameric disulfide-linked complex.

B. D. Morrison, M. L. Swanson, L. J. Sweet, Jeffrey E. Pessin

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

The purified human placental alpha 2 beta 2 heterotetrameric insulin receptor complex was reduced and dissociated into functional alpha beta heterodimers by a combination of alkaline pH and dithiothreitol treatment. Insulin treatment of the isolated alpha beta heterodimeric complex was observed to induce the complete reassociation to an alpha 2 beta 2 heterotetrameric state when analyzed by nondenaturing Bio-Gel A-1.5m gel filtration chromatography. Nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 125I-insulin affinity cross-linked and 32P-autophosphorylated alpha beta heterodimers demonstrated that the insulin-dependent reassociation to the alpha 2 beta 2 heterotetrameric state occurred both covalently and noncovalently under these conditions. Comparison by reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the insulin-dependent covalent reassociation to an alpha 2 beta 2 heterotetrameric complex was due to the formation of a disulfide linkage(s) between the alpha beta heterodimers. beta subunit autophosphorylation of the control alpha 2 beta 2 heterotetrameric insulin receptor preparation was maximally stimulated within 5 min of insulin preincubation and occurred exclusively in the Mr = 400,000 alpha 2 beta 2 complex. Similarly, maximal insulin-stimulated beta subunit autophosphorylation of the alpha beta heterodimeric preparation occurred within 5 min of insulin pretreatment in the Mr = 210,000 alpha beta complex. However, 4 h of insulin pretreatment of the alpha beta heterodimer preparation induced the formation (6-fold) of a covalent 32P-labeled alpha 2 beta 2 heterotetrameric complex. Maximal stimulation of substrate phosphorylation for the alpha 2 beta 2 heterotetrameric complex was also observed to occur within 5 min of insulin treatment, whereas maximal insulin-stimulated substrate phosphorylation of the alpha beta heterodimeric complex required greater than 4 h. These data demonstrate that (i) insulin treatment can induce the reassociation of the alpha beta heterodimeric complex into a covalent alpha 2 beta 2 heterotetrameric state, and (ii) insulin-dependent protein kinase activation of the alpha beta heterodimeric insulin receptor correlates with the covalent reassociation into a disulfide-linked alpha 2 beta 2 heterotetrameric complex.

Original languageEnglish (US)
Pages (from-to)7806-7813
Number of pages8
JournalJournal of Biological Chemistry
Volume263
Issue number16
StatePublished - Jun 5 1988
Externally publishedYes

Fingerprint

Insulin Receptor
Disulfides
Insulin
Phosphorylation
Electrophoresis
Sodium Dodecyl Sulfate
Polyacrylamide Gel Electrophoresis
Gels
Dithiothreitol
Substrates
Chromatography
Protein Kinases
Gel Chromatography
Chemical activation

ASJC Scopus subject areas

  • Biochemistry

Cite this

Insulin-dependent covalent reassociation of isolated alpha beta heterodimeric insulin receptors into an alpha 2 beta 2 heterotetrameric disulfide-linked complex. / Morrison, B. D.; Swanson, M. L.; Sweet, L. J.; Pessin, Jeffrey E.

In: Journal of Biological Chemistry, Vol. 263, No. 16, 05.06.1988, p. 7806-7813.

Research output: Contribution to journalArticle

@article{e2737847ab9542ea90a798be9ab81c61,
title = "Insulin-dependent covalent reassociation of isolated alpha beta heterodimeric insulin receptors into an alpha 2 beta 2 heterotetrameric disulfide-linked complex.",
abstract = "The purified human placental alpha 2 beta 2 heterotetrameric insulin receptor complex was reduced and dissociated into functional alpha beta heterodimers by a combination of alkaline pH and dithiothreitol treatment. Insulin treatment of the isolated alpha beta heterodimeric complex was observed to induce the complete reassociation to an alpha 2 beta 2 heterotetrameric state when analyzed by nondenaturing Bio-Gel A-1.5m gel filtration chromatography. Nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 125I-insulin affinity cross-linked and 32P-autophosphorylated alpha beta heterodimers demonstrated that the insulin-dependent reassociation to the alpha 2 beta 2 heterotetrameric state occurred both covalently and noncovalently under these conditions. Comparison by reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the insulin-dependent covalent reassociation to an alpha 2 beta 2 heterotetrameric complex was due to the formation of a disulfide linkage(s) between the alpha beta heterodimers. beta subunit autophosphorylation of the control alpha 2 beta 2 heterotetrameric insulin receptor preparation was maximally stimulated within 5 min of insulin preincubation and occurred exclusively in the Mr = 400,000 alpha 2 beta 2 complex. Similarly, maximal insulin-stimulated beta subunit autophosphorylation of the alpha beta heterodimeric preparation occurred within 5 min of insulin pretreatment in the Mr = 210,000 alpha beta complex. However, 4 h of insulin pretreatment of the alpha beta heterodimer preparation induced the formation (6-fold) of a covalent 32P-labeled alpha 2 beta 2 heterotetrameric complex. Maximal stimulation of substrate phosphorylation for the alpha 2 beta 2 heterotetrameric complex was also observed to occur within 5 min of insulin treatment, whereas maximal insulin-stimulated substrate phosphorylation of the alpha beta heterodimeric complex required greater than 4 h. These data demonstrate that (i) insulin treatment can induce the reassociation of the alpha beta heterodimeric complex into a covalent alpha 2 beta 2 heterotetrameric state, and (ii) insulin-dependent protein kinase activation of the alpha beta heterodimeric insulin receptor correlates with the covalent reassociation into a disulfide-linked alpha 2 beta 2 heterotetrameric complex.",
author = "Morrison, {B. D.} and Swanson, {M. L.} and Sweet, {L. J.} and Pessin, {Jeffrey E.}",
year = "1988",
month = "6",
day = "5",
language = "English (US)",
volume = "263",
pages = "7806--7813",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "16",

}

TY - JOUR

T1 - Insulin-dependent covalent reassociation of isolated alpha beta heterodimeric insulin receptors into an alpha 2 beta 2 heterotetrameric disulfide-linked complex.

AU - Morrison, B. D.

AU - Swanson, M. L.

AU - Sweet, L. J.

AU - Pessin, Jeffrey E.

PY - 1988/6/5

Y1 - 1988/6/5

N2 - The purified human placental alpha 2 beta 2 heterotetrameric insulin receptor complex was reduced and dissociated into functional alpha beta heterodimers by a combination of alkaline pH and dithiothreitol treatment. Insulin treatment of the isolated alpha beta heterodimeric complex was observed to induce the complete reassociation to an alpha 2 beta 2 heterotetrameric state when analyzed by nondenaturing Bio-Gel A-1.5m gel filtration chromatography. Nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 125I-insulin affinity cross-linked and 32P-autophosphorylated alpha beta heterodimers demonstrated that the insulin-dependent reassociation to the alpha 2 beta 2 heterotetrameric state occurred both covalently and noncovalently under these conditions. Comparison by reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the insulin-dependent covalent reassociation to an alpha 2 beta 2 heterotetrameric complex was due to the formation of a disulfide linkage(s) between the alpha beta heterodimers. beta subunit autophosphorylation of the control alpha 2 beta 2 heterotetrameric insulin receptor preparation was maximally stimulated within 5 min of insulin preincubation and occurred exclusively in the Mr = 400,000 alpha 2 beta 2 complex. Similarly, maximal insulin-stimulated beta subunit autophosphorylation of the alpha beta heterodimeric preparation occurred within 5 min of insulin pretreatment in the Mr = 210,000 alpha beta complex. However, 4 h of insulin pretreatment of the alpha beta heterodimer preparation induced the formation (6-fold) of a covalent 32P-labeled alpha 2 beta 2 heterotetrameric complex. Maximal stimulation of substrate phosphorylation for the alpha 2 beta 2 heterotetrameric complex was also observed to occur within 5 min of insulin treatment, whereas maximal insulin-stimulated substrate phosphorylation of the alpha beta heterodimeric complex required greater than 4 h. These data demonstrate that (i) insulin treatment can induce the reassociation of the alpha beta heterodimeric complex into a covalent alpha 2 beta 2 heterotetrameric state, and (ii) insulin-dependent protein kinase activation of the alpha beta heterodimeric insulin receptor correlates with the covalent reassociation into a disulfide-linked alpha 2 beta 2 heterotetrameric complex.

AB - The purified human placental alpha 2 beta 2 heterotetrameric insulin receptor complex was reduced and dissociated into functional alpha beta heterodimers by a combination of alkaline pH and dithiothreitol treatment. Insulin treatment of the isolated alpha beta heterodimeric complex was observed to induce the complete reassociation to an alpha 2 beta 2 heterotetrameric state when analyzed by nondenaturing Bio-Gel A-1.5m gel filtration chromatography. Nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 125I-insulin affinity cross-linked and 32P-autophosphorylated alpha beta heterodimers demonstrated that the insulin-dependent reassociation to the alpha 2 beta 2 heterotetrameric state occurred both covalently and noncovalently under these conditions. Comparison by reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the insulin-dependent covalent reassociation to an alpha 2 beta 2 heterotetrameric complex was due to the formation of a disulfide linkage(s) between the alpha beta heterodimers. beta subunit autophosphorylation of the control alpha 2 beta 2 heterotetrameric insulin receptor preparation was maximally stimulated within 5 min of insulin preincubation and occurred exclusively in the Mr = 400,000 alpha 2 beta 2 complex. Similarly, maximal insulin-stimulated beta subunit autophosphorylation of the alpha beta heterodimeric preparation occurred within 5 min of insulin pretreatment in the Mr = 210,000 alpha beta complex. However, 4 h of insulin pretreatment of the alpha beta heterodimer preparation induced the formation (6-fold) of a covalent 32P-labeled alpha 2 beta 2 heterotetrameric complex. Maximal stimulation of substrate phosphorylation for the alpha 2 beta 2 heterotetrameric complex was also observed to occur within 5 min of insulin treatment, whereas maximal insulin-stimulated substrate phosphorylation of the alpha beta heterodimeric complex required greater than 4 h. These data demonstrate that (i) insulin treatment can induce the reassociation of the alpha beta heterodimeric complex into a covalent alpha 2 beta 2 heterotetrameric state, and (ii) insulin-dependent protein kinase activation of the alpha beta heterodimeric insulin receptor correlates with the covalent reassociation into a disulfide-linked alpha 2 beta 2 heterotetrameric complex.

UR - http://www.scopus.com/inward/record.url?scp=0024278741&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024278741&partnerID=8YFLogxK

M3 - Article

C2 - 3286642

AN - SCOPUS:0024278741

VL - 263

SP - 7806

EP - 7813

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 16

ER -