Abstract
BACKGROUND: Bone marrow mesenchymal stem cells have low immunogenicity and immunomodulatory effect, but there are seldom reports concerning the immunomodulatory effect of Wharton's jelly-derived mesenchymal stem cells of human umbilical cord and its mechanims. OBJECTIVE: To investigate the immunomodulatory effects and mechanisms of Wharton's jelly-derived mesenchymal stem cells of human umbilical cord on varient peripheral blood T lymphocytes. METHODS: Mesenchymal stem cells were isolateded from Wharton's jelly of human umbilical cord by tissue culture. T lymphocytes from human peripheral blood were stimulated by phytohemagglutinin and co-cultured with umbilical cord Wharton's jelly-derived mesenchymal stem cells and umbilical cord Wharton's jelly-derived mesenchymal stem cells supernatant respectively to measure A value following 72 hours of coculture using multifunctional microplate reader. Expression of cytokines including transforming growth factor-beta 1 (TGF-β1) and interferon-γ (IFN-γ) was evaluated by enzyme-labeled immunosorbent assay. RESULTS AND CONCLUSION: Wharton's jelly-derived mesenchymal stem cells could inhibite the proliferation of T lymphocytes induced by phytohemagglutinin. The proliferation inhibition rate was 56% (P < 0.01). Wharton's jelly-derived mesenchymal stem cells supernatant also had inhibitory effects on proliferation of T lymphocytes induced by phytohemagglutinin, in a dose-dependent fashion. The proliferation inhibition rates were 8.3% and 27% respectively in the 50% Wharton's jelly-derived mesenchymal stem cells supernatant and 100% Wharton's jelly-derived mesenchymal stem cells supernatant groups (P < 0.05). Wharton's jelly-derived mesenchymal stem cells significantly decreased γ-interferon secrted from T-lymphocytes (P < 0.05). The secretion of TGF-β1 was lower in the coculture of Wharton's jelly-derived mesenchymal stem cells and T lymphocytes group than Wharton's jelly-derived mesenchymal stem cells alone group (P < 0.05). These indicated that Wharton's jelly-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells supernatant have inhibitory effects on proliferation of T lymphocytes induced by phytohemagglutinin. The mechanims may be associated with cell contant and inhibition of γ-interferon secrted from T-lymphocytes.
Original language | English (US) |
---|---|
Pages (from-to) | 2485-2491 |
Number of pages | 7 |
Journal | Journal of Clinical Rehabilitative Tissue Engineering Research |
Volume | 14 |
Issue number | 14 |
DOIs | |
State | Published - Apr 2 2010 |
Externally published | Yes |
Fingerprint
ASJC Scopus subject areas
- Clinical Biochemistry
- Biomedical Engineering
- Transplantation
Cite this
Immunomodulatory effect of Wharton's jelly-derived mesenchymal stem cells from human umbilical cord on human peripheral blood T lymphocytes. / Zhou, Chang Hui; Tian, Yi; Yang, Bo; Hu, Xiang; Jiao, Hong Liang; Zhou, Yun Fan; Wang, Cheng Chun; Gu, Chen Xi; Lei, Ning Jing; Guan, Fangxia.
In: Journal of Clinical Rehabilitative Tissue Engineering Research, Vol. 14, No. 14, 02.04.2010, p. 2485-2491.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Immunomodulatory effect of Wharton's jelly-derived mesenchymal stem cells from human umbilical cord on human peripheral blood T lymphocytes
AU - Zhou, Chang Hui
AU - Tian, Yi
AU - Yang, Bo
AU - Hu, Xiang
AU - Jiao, Hong Liang
AU - Zhou, Yun Fan
AU - Wang, Cheng Chun
AU - Gu, Chen Xi
AU - Lei, Ning Jing
AU - Guan, Fangxia
PY - 2010/4/2
Y1 - 2010/4/2
N2 - BACKGROUND: Bone marrow mesenchymal stem cells have low immunogenicity and immunomodulatory effect, but there are seldom reports concerning the immunomodulatory effect of Wharton's jelly-derived mesenchymal stem cells of human umbilical cord and its mechanims. OBJECTIVE: To investigate the immunomodulatory effects and mechanisms of Wharton's jelly-derived mesenchymal stem cells of human umbilical cord on varient peripheral blood T lymphocytes. METHODS: Mesenchymal stem cells were isolateded from Wharton's jelly of human umbilical cord by tissue culture. T lymphocytes from human peripheral blood were stimulated by phytohemagglutinin and co-cultured with umbilical cord Wharton's jelly-derived mesenchymal stem cells and umbilical cord Wharton's jelly-derived mesenchymal stem cells supernatant respectively to measure A value following 72 hours of coculture using multifunctional microplate reader. Expression of cytokines including transforming growth factor-beta 1 (TGF-β1) and interferon-γ (IFN-γ) was evaluated by enzyme-labeled immunosorbent assay. RESULTS AND CONCLUSION: Wharton's jelly-derived mesenchymal stem cells could inhibite the proliferation of T lymphocytes induced by phytohemagglutinin. The proliferation inhibition rate was 56% (P < 0.01). Wharton's jelly-derived mesenchymal stem cells supernatant also had inhibitory effects on proliferation of T lymphocytes induced by phytohemagglutinin, in a dose-dependent fashion. The proliferation inhibition rates were 8.3% and 27% respectively in the 50% Wharton's jelly-derived mesenchymal stem cells supernatant and 100% Wharton's jelly-derived mesenchymal stem cells supernatant groups (P < 0.05). Wharton's jelly-derived mesenchymal stem cells significantly decreased γ-interferon secrted from T-lymphocytes (P < 0.05). The secretion of TGF-β1 was lower in the coculture of Wharton's jelly-derived mesenchymal stem cells and T lymphocytes group than Wharton's jelly-derived mesenchymal stem cells alone group (P < 0.05). These indicated that Wharton's jelly-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells supernatant have inhibitory effects on proliferation of T lymphocytes induced by phytohemagglutinin. The mechanims may be associated with cell contant and inhibition of γ-interferon secrted from T-lymphocytes.
AB - BACKGROUND: Bone marrow mesenchymal stem cells have low immunogenicity and immunomodulatory effect, but there are seldom reports concerning the immunomodulatory effect of Wharton's jelly-derived mesenchymal stem cells of human umbilical cord and its mechanims. OBJECTIVE: To investigate the immunomodulatory effects and mechanisms of Wharton's jelly-derived mesenchymal stem cells of human umbilical cord on varient peripheral blood T lymphocytes. METHODS: Mesenchymal stem cells were isolateded from Wharton's jelly of human umbilical cord by tissue culture. T lymphocytes from human peripheral blood were stimulated by phytohemagglutinin and co-cultured with umbilical cord Wharton's jelly-derived mesenchymal stem cells and umbilical cord Wharton's jelly-derived mesenchymal stem cells supernatant respectively to measure A value following 72 hours of coculture using multifunctional microplate reader. Expression of cytokines including transforming growth factor-beta 1 (TGF-β1) and interferon-γ (IFN-γ) was evaluated by enzyme-labeled immunosorbent assay. RESULTS AND CONCLUSION: Wharton's jelly-derived mesenchymal stem cells could inhibite the proliferation of T lymphocytes induced by phytohemagglutinin. The proliferation inhibition rate was 56% (P < 0.01). Wharton's jelly-derived mesenchymal stem cells supernatant also had inhibitory effects on proliferation of T lymphocytes induced by phytohemagglutinin, in a dose-dependent fashion. The proliferation inhibition rates were 8.3% and 27% respectively in the 50% Wharton's jelly-derived mesenchymal stem cells supernatant and 100% Wharton's jelly-derived mesenchymal stem cells supernatant groups (P < 0.05). Wharton's jelly-derived mesenchymal stem cells significantly decreased γ-interferon secrted from T-lymphocytes (P < 0.05). The secretion of TGF-β1 was lower in the coculture of Wharton's jelly-derived mesenchymal stem cells and T lymphocytes group than Wharton's jelly-derived mesenchymal stem cells alone group (P < 0.05). These indicated that Wharton's jelly-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells supernatant have inhibitory effects on proliferation of T lymphocytes induced by phytohemagglutinin. The mechanims may be associated with cell contant and inhibition of γ-interferon secrted from T-lymphocytes.
UR - http://www.scopus.com/inward/record.url?scp=77954938146&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954938146&partnerID=8YFLogxK
U2 - 10.3969/j.issn.1673-8225.2010.14.004
DO - 10.3969/j.issn.1673-8225.2010.14.004
M3 - Article
AN - SCOPUS:77954938146
VL - 14
SP - 2485
EP - 2491
JO - Chinese Journal of Tissue Engineering Research
JF - Chinese Journal of Tissue Engineering Research
SN - 1673-8225
IS - 14
ER -