TY - JOUR
T1 - Imaging glycans in zebrafish embryos by metabolic labeling and bioorthogonal click chemistry.
AU - Jiang, Hao
AU - Feng, Lei
AU - Soriano del Amo, David
AU - Seidel, Ronald D.
AU - Marlow, Florence
AU - Wu, Peng
PY - 2011
Y1 - 2011
N2 - Imaging glycans in vivo has recently been enabled using a bioorthogonal chemical reporter strategy by treating cells or organisms with azide- or alkyne-tagged monosaccharides. The modified monosaccharides, processed by the glycan biosynthetic machinery, are incorporated into cell surface glycoconjugates. The bioorthogonal azide or alkyne tags then allow covalent conjugation with fluorescent probes for visualization, or with affinity probes for enrichment and glycoproteomic analysis. This protocol describes the procedures typically used for noninvasive imaging of fucosylated glycans in zebrafish embryos, including: 1) microinjection of one-cell stage embryos with GDP-5-alkynylfucose (GDP-FucAl), 2) labeling fucosylated glycans in the enveloping layer of zebrafish embryos with azide-conjugated fluorophores via biocompatible Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), and 3) imaging by confocal microscopy. The method described here can be readily extended to visualize other classes of glycans, e.g. glycans containing sialic acid and N-acetylgalactosamine, in developing zebrafish and in other living organisms.
AB - Imaging glycans in vivo has recently been enabled using a bioorthogonal chemical reporter strategy by treating cells or organisms with azide- or alkyne-tagged monosaccharides. The modified monosaccharides, processed by the glycan biosynthetic machinery, are incorporated into cell surface glycoconjugates. The bioorthogonal azide or alkyne tags then allow covalent conjugation with fluorescent probes for visualization, or with affinity probes for enrichment and glycoproteomic analysis. This protocol describes the procedures typically used for noninvasive imaging of fucosylated glycans in zebrafish embryos, including: 1) microinjection of one-cell stage embryos with GDP-5-alkynylfucose (GDP-FucAl), 2) labeling fucosylated glycans in the enveloping layer of zebrafish embryos with azide-conjugated fluorophores via biocompatible Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), and 3) imaging by confocal microscopy. The method described here can be readily extended to visualize other classes of glycans, e.g. glycans containing sialic acid and N-acetylgalactosamine, in developing zebrafish and in other living organisms.
UR - http://www.scopus.com/inward/record.url?scp=84873042734&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84873042734&partnerID=8YFLogxK
M3 - Article
C2 - 21673647
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
SN - 1940-087X
IS - 52
ER -