IGF1R Inhibition Enhances the Therapeutic Effects of Gq/11 Inhibition in Metastatic Uveal Melanoma Progression

Dominic Lapadula, Bao Lam, Mizue Terai, Takahito Sugase, Ryota Tanaka, Eduardo Farias, Rama Kadamb, Melisa Lopez-Anton, Christian C. Heine, Bhavik Modasia, Julio A. Aguirre-Ghiso, Andrew E. Aplin, Takami Sato, Jeffrey L. Benovic

Research output: Contribution to journalArticlepeer-review

Abstract

Uveal melanoma (UM) is the most common intraocular tumor in adults, and up to 50% of patients develop metastatic disease, which remains uncurable. Because patients with metastatic UM have an average survival of less than 1 year after diagnosis, there is an urgent need to develop new treatment strategies. Although activating mutations in Gαq or Gα11 proteins are major drivers of pathogenesis, the therapeutic intervention of downstream Gαq/11 targets has been unsuccessful in treating UM, possibly due to alternative signaling pathways and/or resistance mechanisms. Activation of the insulin-like growth factor 1 (IGF1) signaling pathway promotes cell growth, metastasis, and drug resistance in many types of cancers, including UM, where expression of the IGF1 receptor (IGF1R) correlates with a poor prognosis. In this article, we show that direct inhibition of Gαq/11 by the cyclic depsipeptide YM-254890 in combination with inhibition of IGF1R by linsitinib cooperatively inhibits downstream signaling and proliferation of UM cells. We further demonstrate that a 2-week combination treatment of 0.3 to 0.4 mg/kg of YM-254890 administered by intraperitoneal injection and 25 to 40 mg/kg linsitinib administered by oral gavage effectively inhibits the growth of metastatic UM tumors in immunodeficient NOD scid gamma (NSG) mice and identifies the IGF1 pathway as a potential resistance mechanism in response to Gαq/11 inhibition in UM. These data suggest that the combination of Gαq/11 and IGF1R inhibition provides a promising therapeutic strategy to treat metastatic UM.

Original languageEnglish (US)
Pages (from-to)63-74
Number of pages12
JournalMolecular cancer therapeutics
Volume22
Issue number1
DOIs
StatePublished - Jan 3 2023

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'IGF1R Inhibition Enhances the Therapeutic Effects of Gq/11 Inhibition in Metastatic Uveal Melanoma Progression'. Together they form a unique fingerprint.

Cite this