Identification of an extracellular gate for the proton-coupled folate transporter (PCFT-SLC46A1) by cysteine cross-linking

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon the Escherichia coli glycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln45-TMD1, Asn90-TMD2, Leu290-TMD7, Ser407-TMD11 and Asn411-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [3H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd2+ complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/ S407C pair and a CuPh- and Cd2+-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influx Vmax consistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11.

Original languageEnglish (US)
Pages (from-to)8162-8172
Number of pages11
JournalJournal of Biological Chemistry
Volume291
Issue number15
DOIs
StatePublished - Apr 8 2016

Fingerprint

Proton-Coupled Folate Transporter
Disulfides
Cysteine
Folic Acid
Phosphate Transport Proteins
Biotinylation
Intestinal Absorption
Substrates
Escherichia coli
Conformations
Homeostasis

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology

Cite this

@article{112b2aafd8874056a69f181ac56e1890,
title = "Identification of an extracellular gate for the proton-coupled folate transporter (PCFT-SLC46A1) by cysteine cross-linking",
abstract = "The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon the Escherichia coli glycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln45-TMD1, Asn90-TMD2, Leu290-TMD7, Ser407-TMD11 and Asn411-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [3H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd2+ complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/ S407C pair and a CuPh- and Cd2+-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influx Vmax consistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11.",
author = "Rongbao Zhao and Mitra Najmi and Andras Fiser and Goldman, {I. David}",
year = "2016",
month = "4",
day = "8",
doi = "10.1074/jbc.M115.693929",
language = "English (US)",
volume = "291",
pages = "8162--8172",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "15",

}

TY - JOUR

T1 - Identification of an extracellular gate for the proton-coupled folate transporter (PCFT-SLC46A1) by cysteine cross-linking

AU - Zhao, Rongbao

AU - Najmi, Mitra

AU - Fiser, Andras

AU - Goldman, I. David

PY - 2016/4/8

Y1 - 2016/4/8

N2 - The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon the Escherichia coli glycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln45-TMD1, Asn90-TMD2, Leu290-TMD7, Ser407-TMD11 and Asn411-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [3H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd2+ complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/ S407C pair and a CuPh- and Cd2+-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influx Vmax consistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11.

AB - The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon the Escherichia coli glycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln45-TMD1, Asn90-TMD2, Leu290-TMD7, Ser407-TMD11 and Asn411-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [3H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd2+ complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/ S407C pair and a CuPh- and Cd2+-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influx Vmax consistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11.

UR - http://www.scopus.com/inward/record.url?scp=84964626146&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84964626146&partnerID=8YFLogxK

U2 - 10.1074/jbc.M115.693929

DO - 10.1074/jbc.M115.693929

M3 - Article

VL - 291

SP - 8162

EP - 8172

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 15

ER -