Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Ketopantoate reductase (EC 1.1.1.169) catalyzes the NADPH-dependent reduction of α-ketopantoate to D-(-)-pantoate in the biosynthesis of pantothenate. The pH dependence of V and V/K for the E. coli enzyme suggests the involvement of a general acid/base in the catalytic mechanism. To identify residues involved in catalysis and substrate binding, we mutated the following six strictly conserved residues to Ala: Lys72, Lys176, Glu210, Glu240, Asp248, and Glu256. Of these, the K176A and E256A mutant enzymes showed 233- and 42-fold decreases in Vmax, and 336- and 63-fold increases in the Km value of ketopantoate, respectively, while the other mutants exhibited WT kinetic properties. The Vmax for the K176A and E256A mutant enzymes was markedly increased, up to 25% and 75% of the wild-type level, by exogenously added primary amines and formate, respectively. The rescue efficiencies for the K176A and E256A mutant enzymes were dependent on the molecular volume of rescue agents, as anticipated for a finite active site volume. The protonated form of the amine is responsible for recovery of activity, suggesting that Lys176 functions as a general acid in catalysis of ketopantoate reduction. The rescue efficiencies for the K176A mutant by primary amines were independent of the pKa value of the rescue agents (Brønsted coefficient, α = -0.004 ± 0.008). Insensitivity to acid strength suggests that the chemical reaction is not rate-limiting, consistent with (a) the catalytic efficiency of the wild-type enzyme (kcat/Km = 2 × 106 M-1 s-1) and (b) the small primary deuterium kinetic isotope effects, DV = 1.3 and DV/K = 1.5, observed for the wild-type enzyme. Larger primary deuterium isotope effects on V and V/K were observed for the K176A mutant (DV = 3.0, DV/K = 3.7) but decreased nearly to WT values as the concentration of ethylamine was increased. The nearly WT activity of the E256A mutant in the presence of formate argues for an important role for this residue in substrate binding. The double mutant (K176A/E256A) has no detectable ketopantoate reductase activity. These results indicate that Lys176 and Glu256 of the E. coli ketopantoate reductase are active site residues, and we propose specific roles for each in binding ketopantoate and catalysis.

Original languageEnglish (US)
Pages (from-to)16244-16251
Number of pages8
JournalBiochemistry
Volume39
Issue number51
DOIs
StatePublished - Dec 26 2000

Fingerprint

Mutagenesis
Escherichia coli
Catalytic Domain
formic acid
Enzymes
Catalysis
Amines
Deuterium
Isotopes
Acids
Kinetics
Biosynthesis
Substrates
NADP
2-dehydropantoate 2-reductase
Chemical reactions
Recovery

ASJC Scopus subject areas

  • Biochemistry

Cite this

Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue. / Zheng, R.; Blanchard, John S.

In: Biochemistry, Vol. 39, No. 51, 26.12.2000, p. 16244-16251.

Research output: Contribution to journalArticle

@article{a523479b766d4bd89563ac659863c09a,
title = "Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue",
abstract = "Ketopantoate reductase (EC 1.1.1.169) catalyzes the NADPH-dependent reduction of α-ketopantoate to D-(-)-pantoate in the biosynthesis of pantothenate. The pH dependence of V and V/K for the E. coli enzyme suggests the involvement of a general acid/base in the catalytic mechanism. To identify residues involved in catalysis and substrate binding, we mutated the following six strictly conserved residues to Ala: Lys72, Lys176, Glu210, Glu240, Asp248, and Glu256. Of these, the K176A and E256A mutant enzymes showed 233- and 42-fold decreases in Vmax, and 336- and 63-fold increases in the Km value of ketopantoate, respectively, while the other mutants exhibited WT kinetic properties. The Vmax for the K176A and E256A mutant enzymes was markedly increased, up to 25{\%} and 75{\%} of the wild-type level, by exogenously added primary amines and formate, respectively. The rescue efficiencies for the K176A and E256A mutant enzymes were dependent on the molecular volume of rescue agents, as anticipated for a finite active site volume. The protonated form of the amine is responsible for recovery of activity, suggesting that Lys176 functions as a general acid in catalysis of ketopantoate reduction. The rescue efficiencies for the K176A mutant by primary amines were independent of the pKa value of the rescue agents (Br{\o}nsted coefficient, α = -0.004 ± 0.008). Insensitivity to acid strength suggests that the chemical reaction is not rate-limiting, consistent with (a) the catalytic efficiency of the wild-type enzyme (kcat/Km = 2 × 106 M-1 s-1) and (b) the small primary deuterium kinetic isotope effects, DV = 1.3 and DV/K = 1.5, observed for the wild-type enzyme. Larger primary deuterium isotope effects on V and V/K were observed for the K176A mutant (DV = 3.0, DV/K = 3.7) but decreased nearly to WT values as the concentration of ethylamine was increased. The nearly WT activity of the E256A mutant in the presence of formate argues for an important role for this residue in substrate binding. The double mutant (K176A/E256A) has no detectable ketopantoate reductase activity. These results indicate that Lys176 and Glu256 of the E. coli ketopantoate reductase are active site residues, and we propose specific roles for each in binding ketopantoate and catalysis.",
author = "R. Zheng and Blanchard, {John S.}",
year = "2000",
month = "12",
day = "26",
doi = "10.1021/bi002134v",
language = "English (US)",
volume = "39",
pages = "16244--16251",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "51",

}

TY - JOUR

T1 - Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue

AU - Zheng, R.

AU - Blanchard, John S.

PY - 2000/12/26

Y1 - 2000/12/26

N2 - Ketopantoate reductase (EC 1.1.1.169) catalyzes the NADPH-dependent reduction of α-ketopantoate to D-(-)-pantoate in the biosynthesis of pantothenate. The pH dependence of V and V/K for the E. coli enzyme suggests the involvement of a general acid/base in the catalytic mechanism. To identify residues involved in catalysis and substrate binding, we mutated the following six strictly conserved residues to Ala: Lys72, Lys176, Glu210, Glu240, Asp248, and Glu256. Of these, the K176A and E256A mutant enzymes showed 233- and 42-fold decreases in Vmax, and 336- and 63-fold increases in the Km value of ketopantoate, respectively, while the other mutants exhibited WT kinetic properties. The Vmax for the K176A and E256A mutant enzymes was markedly increased, up to 25% and 75% of the wild-type level, by exogenously added primary amines and formate, respectively. The rescue efficiencies for the K176A and E256A mutant enzymes were dependent on the molecular volume of rescue agents, as anticipated for a finite active site volume. The protonated form of the amine is responsible for recovery of activity, suggesting that Lys176 functions as a general acid in catalysis of ketopantoate reduction. The rescue efficiencies for the K176A mutant by primary amines were independent of the pKa value of the rescue agents (Brønsted coefficient, α = -0.004 ± 0.008). Insensitivity to acid strength suggests that the chemical reaction is not rate-limiting, consistent with (a) the catalytic efficiency of the wild-type enzyme (kcat/Km = 2 × 106 M-1 s-1) and (b) the small primary deuterium kinetic isotope effects, DV = 1.3 and DV/K = 1.5, observed for the wild-type enzyme. Larger primary deuterium isotope effects on V and V/K were observed for the K176A mutant (DV = 3.0, DV/K = 3.7) but decreased nearly to WT values as the concentration of ethylamine was increased. The nearly WT activity of the E256A mutant in the presence of formate argues for an important role for this residue in substrate binding. The double mutant (K176A/E256A) has no detectable ketopantoate reductase activity. These results indicate that Lys176 and Glu256 of the E. coli ketopantoate reductase are active site residues, and we propose specific roles for each in binding ketopantoate and catalysis.

AB - Ketopantoate reductase (EC 1.1.1.169) catalyzes the NADPH-dependent reduction of α-ketopantoate to D-(-)-pantoate in the biosynthesis of pantothenate. The pH dependence of V and V/K for the E. coli enzyme suggests the involvement of a general acid/base in the catalytic mechanism. To identify residues involved in catalysis and substrate binding, we mutated the following six strictly conserved residues to Ala: Lys72, Lys176, Glu210, Glu240, Asp248, and Glu256. Of these, the K176A and E256A mutant enzymes showed 233- and 42-fold decreases in Vmax, and 336- and 63-fold increases in the Km value of ketopantoate, respectively, while the other mutants exhibited WT kinetic properties. The Vmax for the K176A and E256A mutant enzymes was markedly increased, up to 25% and 75% of the wild-type level, by exogenously added primary amines and formate, respectively. The rescue efficiencies for the K176A and E256A mutant enzymes were dependent on the molecular volume of rescue agents, as anticipated for a finite active site volume. The protonated form of the amine is responsible for recovery of activity, suggesting that Lys176 functions as a general acid in catalysis of ketopantoate reduction. The rescue efficiencies for the K176A mutant by primary amines were independent of the pKa value of the rescue agents (Brønsted coefficient, α = -0.004 ± 0.008). Insensitivity to acid strength suggests that the chemical reaction is not rate-limiting, consistent with (a) the catalytic efficiency of the wild-type enzyme (kcat/Km = 2 × 106 M-1 s-1) and (b) the small primary deuterium kinetic isotope effects, DV = 1.3 and DV/K = 1.5, observed for the wild-type enzyme. Larger primary deuterium isotope effects on V and V/K were observed for the K176A mutant (DV = 3.0, DV/K = 3.7) but decreased nearly to WT values as the concentration of ethylamine was increased. The nearly WT activity of the E256A mutant in the presence of formate argues for an important role for this residue in substrate binding. The double mutant (K176A/E256A) has no detectable ketopantoate reductase activity. These results indicate that Lys176 and Glu256 of the E. coli ketopantoate reductase are active site residues, and we propose specific roles for each in binding ketopantoate and catalysis.

UR - http://www.scopus.com/inward/record.url?scp=0034719113&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034719113&partnerID=8YFLogxK

U2 - 10.1021/bi002134v

DO - 10.1021/bi002134v

M3 - Article

C2 - 11123955

AN - SCOPUS:0034719113

VL - 39

SP - 16244

EP - 16251

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 51

ER -