Hydroxylation of 4-amino-antifolates by partially purified aldehyde oxidase from rabbit liver

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

This paper explores the interaction between 4-amino-antifolates and aldehyde oxidase (aldehyde: O2 oxidoreductase, EC 1.2.3.1) that was purified 60- to 120-fold from rabbit liver with yields of 5-15%. The purification procedure consisted of one heat and two ammonium sulfate precipitations followed by chromatography on hydroxylapatite and then Sephacryl S-200. Analysis of initial rates of hydroxylation of methotrexate, aminopterin and dichloromethotrexate indicated an order of affinities of dichloromethotrexate (10 μM) > methotrexate (35 μM) > aminopterin (272 μM). There was no difference in the Vmax of methotrexate and dichloromethotrexate (248 and 231 nmoles/min/mg protein respectively); aminopterin (130 nmoles/min/mg protein) was less than that of the other two. The Vmax KmKm ratios were 24.1, 7.20 and 0.48 for dichloromethotrexate, methotrexate and aminopterin respectively. This enzyme preparation also mediated the hydroxylation of methotrexate polyglutamyl derivatives with a decrease in the rates of hydroxylation, as the total number of glutamyl residues was increased to four, a consequence of a marked increase in Km values and/or decrease in Vmax; the ratios of the Vmax Km for the di-, tri-, and tetraglutamates were 0.94, 0.31 and 0.21 respectively. This low activity of the polyglutamyl derivatives of methotrexate for aldehyde oxidase is consistent with the observations that the predominant forms of 4-amino-antifolate polyglutamates found in human liver after administration of methotrexate are the polyglutamyl derivatives of the parent compound. Finally, substrate inhibition for methotrexate and dichloromethotrexate was observed at concentrations in excess of 150 and 30 μM, respectively, about 5- and 3-fold higher than their respective Km values. Hence, while dichloromethotrexate had the lowest for aldehyde oxidase amongst the 4-amino-antifolates studied, the actual rates of hydroxylation depended upon the concentration employed because of substrate inhibition. Aminopterin was a very poor substrate for this enzyme at low and saturating concentrations. These properties of the hydroxylation of 4-amino-antifolates may be of importance in the design of clinical regimens with these agents-in particular, regimens that employ infusion of these drugs into the hepatic artery. However, the relevance of these observations to the hydroxylation of 4-amino-antifolates by human liver remains to be established.

Original languageEnglish (US)
Pages (from-to)1325-1330
Number of pages6
JournalBiochemical Pharmacology
Volume35
Issue number8
DOIs
StatePublished - Apr 15 1986
Externally publishedYes

Fingerprint

Aldehyde Oxidoreductases
Folic Acid Antagonists
Hydroxylation
Aldehydes
Methotrexate
Liver
Aminopterin
Oxidoreductases
Rabbits
Derivatives
Substrates
Polyglutamic Acid
Hepatic Artery
Ammonium Sulfate
Enzymes
Durapatite
Chromatography
Purification
Proteins
Hot Temperature

ASJC Scopus subject areas

  • Pharmacology

Cite this

Hydroxylation of 4-amino-antifolates by partially purified aldehyde oxidase from rabbit liver. / Fabre, Gerard; Seither, Richard; Goldman, I. David.

In: Biochemical Pharmacology, Vol. 35, No. 8, 15.04.1986, p. 1325-1330.

Research output: Contribution to journalArticle

@article{91c1e61c21ca4a82aae4cf41fe613a19,
title = "Hydroxylation of 4-amino-antifolates by partially purified aldehyde oxidase from rabbit liver",
abstract = "This paper explores the interaction between 4-amino-antifolates and aldehyde oxidase (aldehyde: O2 oxidoreductase, EC 1.2.3.1) that was purified 60- to 120-fold from rabbit liver with yields of 5-15{\%}. The purification procedure consisted of one heat and two ammonium sulfate precipitations followed by chromatography on hydroxylapatite and then Sephacryl S-200. Analysis of initial rates of hydroxylation of methotrexate, aminopterin and dichloromethotrexate indicated an order of affinities of dichloromethotrexate (10 μM) > methotrexate (35 μM) > aminopterin (272 μM). There was no difference in the Vmax of methotrexate and dichloromethotrexate (248 and 231 nmoles/min/mg protein respectively); aminopterin (130 nmoles/min/mg protein) was less than that of the other two. The Vmax KmKm ratios were 24.1, 7.20 and 0.48 for dichloromethotrexate, methotrexate and aminopterin respectively. This enzyme preparation also mediated the hydroxylation of methotrexate polyglutamyl derivatives with a decrease in the rates of hydroxylation, as the total number of glutamyl residues was increased to four, a consequence of a marked increase in Km values and/or decrease in Vmax; the ratios of the Vmax Km for the di-, tri-, and tetraglutamates were 0.94, 0.31 and 0.21 respectively. This low activity of the polyglutamyl derivatives of methotrexate for aldehyde oxidase is consistent with the observations that the predominant forms of 4-amino-antifolate polyglutamates found in human liver after administration of methotrexate are the polyglutamyl derivatives of the parent compound. Finally, substrate inhibition for methotrexate and dichloromethotrexate was observed at concentrations in excess of 150 and 30 μM, respectively, about 5- and 3-fold higher than their respective Km values. Hence, while dichloromethotrexate had the lowest for aldehyde oxidase amongst the 4-amino-antifolates studied, the actual rates of hydroxylation depended upon the concentration employed because of substrate inhibition. Aminopterin was a very poor substrate for this enzyme at low and saturating concentrations. These properties of the hydroxylation of 4-amino-antifolates may be of importance in the design of clinical regimens with these agents-in particular, regimens that employ infusion of these drugs into the hepatic artery. However, the relevance of these observations to the hydroxylation of 4-amino-antifolates by human liver remains to be established.",
author = "Gerard Fabre and Richard Seither and Goldman, {I. David}",
year = "1986",
month = "4",
day = "15",
doi = "10.1016/0006-2952(86)90277-7",
language = "English (US)",
volume = "35",
pages = "1325--1330",
journal = "Biochemical Pharmacology",
issn = "0006-2952",
publisher = "Elsevier Inc.",
number = "8",

}

TY - JOUR

T1 - Hydroxylation of 4-amino-antifolates by partially purified aldehyde oxidase from rabbit liver

AU - Fabre, Gerard

AU - Seither, Richard

AU - Goldman, I. David

PY - 1986/4/15

Y1 - 1986/4/15

N2 - This paper explores the interaction between 4-amino-antifolates and aldehyde oxidase (aldehyde: O2 oxidoreductase, EC 1.2.3.1) that was purified 60- to 120-fold from rabbit liver with yields of 5-15%. The purification procedure consisted of one heat and two ammonium sulfate precipitations followed by chromatography on hydroxylapatite and then Sephacryl S-200. Analysis of initial rates of hydroxylation of methotrexate, aminopterin and dichloromethotrexate indicated an order of affinities of dichloromethotrexate (10 μM) > methotrexate (35 μM) > aminopterin (272 μM). There was no difference in the Vmax of methotrexate and dichloromethotrexate (248 and 231 nmoles/min/mg protein respectively); aminopterin (130 nmoles/min/mg protein) was less than that of the other two. The Vmax KmKm ratios were 24.1, 7.20 and 0.48 for dichloromethotrexate, methotrexate and aminopterin respectively. This enzyme preparation also mediated the hydroxylation of methotrexate polyglutamyl derivatives with a decrease in the rates of hydroxylation, as the total number of glutamyl residues was increased to four, a consequence of a marked increase in Km values and/or decrease in Vmax; the ratios of the Vmax Km for the di-, tri-, and tetraglutamates were 0.94, 0.31 and 0.21 respectively. This low activity of the polyglutamyl derivatives of methotrexate for aldehyde oxidase is consistent with the observations that the predominant forms of 4-amino-antifolate polyglutamates found in human liver after administration of methotrexate are the polyglutamyl derivatives of the parent compound. Finally, substrate inhibition for methotrexate and dichloromethotrexate was observed at concentrations in excess of 150 and 30 μM, respectively, about 5- and 3-fold higher than their respective Km values. Hence, while dichloromethotrexate had the lowest for aldehyde oxidase amongst the 4-amino-antifolates studied, the actual rates of hydroxylation depended upon the concentration employed because of substrate inhibition. Aminopterin was a very poor substrate for this enzyme at low and saturating concentrations. These properties of the hydroxylation of 4-amino-antifolates may be of importance in the design of clinical regimens with these agents-in particular, regimens that employ infusion of these drugs into the hepatic artery. However, the relevance of these observations to the hydroxylation of 4-amino-antifolates by human liver remains to be established.

AB - This paper explores the interaction between 4-amino-antifolates and aldehyde oxidase (aldehyde: O2 oxidoreductase, EC 1.2.3.1) that was purified 60- to 120-fold from rabbit liver with yields of 5-15%. The purification procedure consisted of one heat and two ammonium sulfate precipitations followed by chromatography on hydroxylapatite and then Sephacryl S-200. Analysis of initial rates of hydroxylation of methotrexate, aminopterin and dichloromethotrexate indicated an order of affinities of dichloromethotrexate (10 μM) > methotrexate (35 μM) > aminopterin (272 μM). There was no difference in the Vmax of methotrexate and dichloromethotrexate (248 and 231 nmoles/min/mg protein respectively); aminopterin (130 nmoles/min/mg protein) was less than that of the other two. The Vmax KmKm ratios were 24.1, 7.20 and 0.48 for dichloromethotrexate, methotrexate and aminopterin respectively. This enzyme preparation also mediated the hydroxylation of methotrexate polyglutamyl derivatives with a decrease in the rates of hydroxylation, as the total number of glutamyl residues was increased to four, a consequence of a marked increase in Km values and/or decrease in Vmax; the ratios of the Vmax Km for the di-, tri-, and tetraglutamates were 0.94, 0.31 and 0.21 respectively. This low activity of the polyglutamyl derivatives of methotrexate for aldehyde oxidase is consistent with the observations that the predominant forms of 4-amino-antifolate polyglutamates found in human liver after administration of methotrexate are the polyglutamyl derivatives of the parent compound. Finally, substrate inhibition for methotrexate and dichloromethotrexate was observed at concentrations in excess of 150 and 30 μM, respectively, about 5- and 3-fold higher than their respective Km values. Hence, while dichloromethotrexate had the lowest for aldehyde oxidase amongst the 4-amino-antifolates studied, the actual rates of hydroxylation depended upon the concentration employed because of substrate inhibition. Aminopterin was a very poor substrate for this enzyme at low and saturating concentrations. These properties of the hydroxylation of 4-amino-antifolates may be of importance in the design of clinical regimens with these agents-in particular, regimens that employ infusion of these drugs into the hepatic artery. However, the relevance of these observations to the hydroxylation of 4-amino-antifolates by human liver remains to be established.

UR - http://www.scopus.com/inward/record.url?scp=0022475131&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022475131&partnerID=8YFLogxK

U2 - 10.1016/0006-2952(86)90277-7

DO - 10.1016/0006-2952(86)90277-7

M3 - Article

C2 - 2421732

AN - SCOPUS:0022475131

VL - 35

SP - 1325

EP - 1330

JO - Biochemical Pharmacology

JF - Biochemical Pharmacology

SN - 0006-2952

IS - 8

ER -