Hydrogen bonding of tyrosine B10 to heme-bound oxygen in Ascaris hemoglobin: Direct evidence from UV resonance raman spectroscopy

Shuocai Huang, Jerry Huang, Andrew P. Kloek, Daniel E. Goldberg, Joel M. Friedman

Research output: Contribution to journalArticle

35 Scopus citations


The hemoglobin from Ascaris suum, a parasitic nematode, has a spontaneous dissociation rate for the dioxygen ligand that is 3 orders of magnitude less than for mammalian myoglobins or hemoglobins. In this hemoglobin, the distal histidine is replaced with a glutamine which is capable of forming a stabilizing hydrogen bond to the bound dioxygen. A single hydrogen bond from a glutamine is, under typical circumstances, not sufficient to account for the low off rate for oxygen. Several studies point to a second hydrogen bond to the heme-bound dioxygen originating from tyrosine B10 as the source of this unusual reactivity. In this study ultraviolet (UV) resonance Raman spectroscopy is used to directly observe the formation of this hydrogen bond upon oxygen binding. The study reveals that both oxygen and carbon monoxide induce similar conformational changes in the globin upon binding to the heme; however, in the case of oxygen, a strong hydrogen bond involving a tyrosine is also observed. Similar studies on the QE7L mutant of this Hb suggest that the glutamine plays a role in stabilizing a rigid tertiary structure associated with the distal heme pocket. This conformation maintains the tyrosine in an orientation conducive to hydrogen bond formation with a heme-bound dioxygen ligand.

Original languageEnglish (US)
Pages (from-to)958-962
Number of pages5
JournalJournal of Biological Chemistry
Issue number2
Publication statusPublished - Jan 12 1996


ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this