Humoral Immune Reconstitution Kinetics after Allogeneic Hematopoietic Stem Cell Transplantation in Children

A Maturation Block of IgM Memory B Cells May Lead to Impaired Antibody Immune Reconstitution

Hisham Abdel-Azim, Amro Elshoury, Kris M. Mahadeo, Robertson Parkman, Neena Kapoor

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4+ T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination.

Original languageEnglish (US)
JournalBiology of Blood and Marrow Transplantation
DOIs
StateAccepted/In press - 2017

Fingerprint

Hematopoietic Stem Cell Transplantation
Immunoglobulin M
B-Lymphocytes
Antibodies
Cell Count
Graft vs Host Disease
T-Lymphocytes
Secondary Immunization
Tetanus Toxoid
Whole-Body Irradiation
Fetal Blood
Carbohydrates
Pediatrics

Keywords

  • Allogeneic transplantation
  • B cell
  • Children
  • Humoral
  • Immune reconstitution

ASJC Scopus subject areas

  • Hematology
  • Transplantation

Cite this

@article{ae579b638a1c40ddab598c9dda8ea356,
title = "Humoral Immune Reconstitution Kinetics after Allogeneic Hematopoietic Stem Cell Transplantation in Children: A Maturation Block of IgM Memory B Cells May Lead to Impaired Antibody Immune Reconstitution",
abstract = "Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4+ T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination.",
keywords = "Allogeneic transplantation, B cell, Children, Humoral, Immune reconstitution",
author = "Hisham Abdel-Azim and Amro Elshoury and Mahadeo, {Kris M.} and Robertson Parkman and Neena Kapoor",
year = "2017",
doi = "10.1016/j.bbmt.2017.05.005",
language = "English (US)",
journal = "Biology of Blood and Marrow Transplantation",
issn = "1083-8791",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - Humoral Immune Reconstitution Kinetics after Allogeneic Hematopoietic Stem Cell Transplantation in Children

T2 - A Maturation Block of IgM Memory B Cells May Lead to Impaired Antibody Immune Reconstitution

AU - Abdel-Azim, Hisham

AU - Elshoury, Amro

AU - Mahadeo, Kris M.

AU - Parkman, Robertson

AU - Kapoor, Neena

PY - 2017

Y1 - 2017

N2 - Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4+ T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination.

AB - Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4+ T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination.

KW - Allogeneic transplantation

KW - B cell

KW - Children

KW - Humoral

KW - Immune reconstitution

UR - http://www.scopus.com/inward/record.url?scp=85021279873&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85021279873&partnerID=8YFLogxK

U2 - 10.1016/j.bbmt.2017.05.005

DO - 10.1016/j.bbmt.2017.05.005

M3 - Article

JO - Biology of Blood and Marrow Transplantation

JF - Biology of Blood and Marrow Transplantation

SN - 1083-8791

ER -