Heparan sulfate potentiates leukocyte adhesion on cardiac fibroblast by enhancing Vcam-1 and Icam-1 expression

Francisco Olivares-Silva, Rodolfo Landaeta, Pablo Aránguiz, Samir Bolivar, Claudio Humeres, Renatto Anfossi, Raúl Vivar, Pía Boza, Claudia Muñoz, Viviana Pardo-Jiménez, Concepción Peiró, Carlos F. Sánchez-Ferrer, Guillermo Díaz-Araya

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Cardiac fibroblasts (CF) act as sentinel cells responding to chemokines, cytokines and growth factors released in cardiac tissue in cardiac injury events, such as myocardial infarction (MI). Cardiac injury involves the release of various damage-associated molecular patterns (DAMPs) including heparan sulfate (HS), a constituent of the extracellular matrix (ECM), through the TLR4 receptor activation triggering a strong inflammatory response, inducing leukocytes recruitment. This latter cells are responsible of clearing cell debris and releasing cytokines that promote CF differentiation to myofibroblast (CMF), thus initiating scar formation. CF were isolated from adult male rats and subsequently stimulated with HS or LPS, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in ICAM-1 and VCAM-1 expression. siRNA against ICAM-1 and VCAM-1 were used to evaluate participation of these adhesion molecules on leukocytes recruitment. HS through TLR4, PI3K/AKT and NF-ΚB increased ICAM-1 and VCAM-1 expression, which favored the adhesion of spleen mononuclear cells (SMC) and bone marrow granulocytes (PMN) to CF. These effects were prevented by siRNA against ICAM-1 and VCAM-1. Co-culture of CF with SMC increased α-SMA expression, skewing CF towards a pro-fibrotic phenotype, while CF pretreatment with HS partially reverted this effect. Conclusion These data show the dual role of HS during the initial stages of wound healing. Initially, HS enhance the pro-inflammatory role of CF increasing cytokines secretion; and later, by increasing protein adhesion molecules allows the adhesion of SMC on CF, which trigger CF-to-CMF differentiation.

Original languageEnglish (US)
Pages (from-to)831-842
Number of pages12
JournalBiochimica et Biophysica Acta - Molecular Basis of Disease
Volume1864
Issue number3
DOIs
StatePublished - Mar 2018
Externally publishedYes

Keywords

  • Cardiac fibroblast
  • Heparan sulfate
  • Leukocyte
  • TLR4
  • α-SMA

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Heparan sulfate potentiates leukocyte adhesion on cardiac fibroblast by enhancing Vcam-1 and Icam-1 expression'. Together they form a unique fingerprint.

Cite this