Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents

Gary J. Schwartz, P. R. McHugh, T. H. Moran

Research output: Contribution to journalArticle

149 Citations (Scopus)

Abstract

Both gastric preloads and exogenous cholecystokinin (CCK) administration inhibit food intake, and combinations of preloads and CCK suppress feeding to a greater degree than either stimulus delivered alone. A role for the vagus nerve in mediating CCK's inhibition of food intake has been proposed, and gastric vagal afferent fibers respond to both gastric loads and local CCK infusions. To examine whether combined load and CCK stimuli may synergistically augment gastric neural afferent activity at the level of the peripheral vagus, we have examined the gastric vagal afferent responses (n = 8) to a range of gastric saline loads (1, 2, and 3 ml) and exogenous close celiac arterial CCK (10 and 100 pmol) when administered alone or in combination. Gastric loads ineffective in eliciting a significant increase in vagal afferent activity when administered alone became effective when combined with doses of CCK that were subthreshold for the production of a vagal afferent response. Gastric loads that alone were effective in producing a significant vagal afferent response yielded an even greater response when administered in combination with both subthreshold and suprathreshold doses of CCK. These data demonstrate that, in rats, signals produced by combined gastric load and exogenous CCK administration are integrated peripherally and interact synergistically. These results suggest that signals arising from the vagus may provide sufficient information for the synergistic inhibition of food intake produced by combinations of gastric loads and exogenous CCK.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume265
Issue number4 34-4
StatePublished - 1993
Externally publishedYes

Fingerprint

Cholecystokinin
Stomach
Eating
Vagus Nerve
Abdomen

Keywords

  • feeding inhibition
  • mechanoreceptors

ASJC Scopus subject areas

  • Physiology

Cite this

@article{45ee9e056e584d1185a706f41d1b8070,
title = "Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents",
abstract = "Both gastric preloads and exogenous cholecystokinin (CCK) administration inhibit food intake, and combinations of preloads and CCK suppress feeding to a greater degree than either stimulus delivered alone. A role for the vagus nerve in mediating CCK's inhibition of food intake has been proposed, and gastric vagal afferent fibers respond to both gastric loads and local CCK infusions. To examine whether combined load and CCK stimuli may synergistically augment gastric neural afferent activity at the level of the peripheral vagus, we have examined the gastric vagal afferent responses (n = 8) to a range of gastric saline loads (1, 2, and 3 ml) and exogenous close celiac arterial CCK (10 and 100 pmol) when administered alone or in combination. Gastric loads ineffective in eliciting a significant increase in vagal afferent activity when administered alone became effective when combined with doses of CCK that were subthreshold for the production of a vagal afferent response. Gastric loads that alone were effective in producing a significant vagal afferent response yielded an even greater response when administered in combination with both subthreshold and suprathreshold doses of CCK. These data demonstrate that, in rats, signals produced by combined gastric load and exogenous CCK administration are integrated peripherally and interact synergistically. These results suggest that signals arising from the vagus may provide sufficient information for the synergistic inhibition of food intake produced by combinations of gastric loads and exogenous CCK.",
keywords = "feeding inhibition, mechanoreceptors",
author = "Schwartz, {Gary J.} and McHugh, {P. R.} and Moran, {T. H.}",
year = "1993",
language = "English (US)",
volume = "265",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "4 34-4",

}

TY - JOUR

T1 - Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents

AU - Schwartz, Gary J.

AU - McHugh, P. R.

AU - Moran, T. H.

PY - 1993

Y1 - 1993

N2 - Both gastric preloads and exogenous cholecystokinin (CCK) administration inhibit food intake, and combinations of preloads and CCK suppress feeding to a greater degree than either stimulus delivered alone. A role for the vagus nerve in mediating CCK's inhibition of food intake has been proposed, and gastric vagal afferent fibers respond to both gastric loads and local CCK infusions. To examine whether combined load and CCK stimuli may synergistically augment gastric neural afferent activity at the level of the peripheral vagus, we have examined the gastric vagal afferent responses (n = 8) to a range of gastric saline loads (1, 2, and 3 ml) and exogenous close celiac arterial CCK (10 and 100 pmol) when administered alone or in combination. Gastric loads ineffective in eliciting a significant increase in vagal afferent activity when administered alone became effective when combined with doses of CCK that were subthreshold for the production of a vagal afferent response. Gastric loads that alone were effective in producing a significant vagal afferent response yielded an even greater response when administered in combination with both subthreshold and suprathreshold doses of CCK. These data demonstrate that, in rats, signals produced by combined gastric load and exogenous CCK administration are integrated peripherally and interact synergistically. These results suggest that signals arising from the vagus may provide sufficient information for the synergistic inhibition of food intake produced by combinations of gastric loads and exogenous CCK.

AB - Both gastric preloads and exogenous cholecystokinin (CCK) administration inhibit food intake, and combinations of preloads and CCK suppress feeding to a greater degree than either stimulus delivered alone. A role for the vagus nerve in mediating CCK's inhibition of food intake has been proposed, and gastric vagal afferent fibers respond to both gastric loads and local CCK infusions. To examine whether combined load and CCK stimuli may synergistically augment gastric neural afferent activity at the level of the peripheral vagus, we have examined the gastric vagal afferent responses (n = 8) to a range of gastric saline loads (1, 2, and 3 ml) and exogenous close celiac arterial CCK (10 and 100 pmol) when administered alone or in combination. Gastric loads ineffective in eliciting a significant increase in vagal afferent activity when administered alone became effective when combined with doses of CCK that were subthreshold for the production of a vagal afferent response. Gastric loads that alone were effective in producing a significant vagal afferent response yielded an even greater response when administered in combination with both subthreshold and suprathreshold doses of CCK. These data demonstrate that, in rats, signals produced by combined gastric load and exogenous CCK administration are integrated peripherally and interact synergistically. These results suggest that signals arising from the vagus may provide sufficient information for the synergistic inhibition of food intake produced by combinations of gastric loads and exogenous CCK.

KW - feeding inhibition

KW - mechanoreceptors

UR - http://www.scopus.com/inward/record.url?scp=0027449138&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027449138&partnerID=8YFLogxK

M3 - Article

C2 - 8238459

AN - SCOPUS:0027449138

VL - 265

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 4 34-4

ER -